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Abstract 

Abstract 

This thesis aims a method of condition monitoring in photovoltaic systems using machine-learning 

techniques, more specifically artificial neural network learning. First, to approach from a solar cell level, 

a known model, the one-diode and five-parameter model is used to model it. Follow, an upgraded solar 

cell model that englobes the previous one but also capable of simulating mismatch faults is used to 

simulate the whole system. This model is employed to create a database with the following conditions: 

standard, short circuit and shading. The first mode has no faults, the second has several cells short-

circuited, and the third one has some cells under the effect of a lower level of irradiance. Based on this 

model, input data for the neural network model has been obtained as the voltage at maximum power, 

current at maximum power, panel temperature and irradiance. Normalization of the inputs has been 

considered for a more accessible and better convergence and more precise classification results. The 

neural network is trained to obtain the functional relation between conditions and fault diagnostic 

preview. Following the training, an outdoor test of a photovoltaic panel is made. The essential inputs are 

presented to the trained neural network model for it to preview the supposed PV panel conditions, 

comparing with the real condition. The results achieved proved to be efficient, and it accurately 

distinguished standard from shading and high short-circuits from the standard condition. Several 

recommendations are also systematized to improve and develop this method of diagnosis.  

Keywords 

Condition monitoring, Diagnosis, Photovoltaic, Mismatch faults, Artificial neural network, Machine 

learning   
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Resumo 

Resumo 

Esta tese visa um método de diagnóstico de comportamentos em sistemas fotovoltaicos usando a 

técnica de inteligência artificial. Aproximando-se do nível de célula solar, usando o modelo de díodo e 

cinco parâmetros, outro modelo, capaz de simular falhas de incompatibilidade, é utilizado para criar 

uma base de dados com os seguintes comportamentos: padrão, onde a condição operacional não 

apresenta falhas, curto-circuito, onde várias células estão em curto-circuito e sombreamento, onde 

algumas células estão sob o efeito de menor nível de irradiância. A partir disso, são obtidas as entradas 

para o modelo de inteligência artificial, sendo elas: tensão na potência máxima, corrente na potência 

máxima, temperatura do painel e irradiância. Para uma convergência e classificação mais fáceis e com 

maior precisão, é feita uma normalização dessas entradas. Após o treinamento da rede neural artificial, 

um modelo matemático é extraído. Um teste ao ar livre de um painel fotovoltaico é realizado com todos 

os modos. Em seguida, as entradas básicas são apresentadas ao modelo treinado e os 

comportamentos supostos são obtidos. Uma comparação final entre os comportamentos conhecidos e 

os produzidos pelo modelo é feita. Isso provou ser eficiente em um primeiro esboço do problema e 

distinguiu com precisão os modos padrão do sombreamento e altos curtos-circuitos do padrão.  

Palavras-chave 

Diagnóstico, Fotovoltaico, Falhas de incompatibilidade, Rede neural artificial  



 

 
x 

 

  



 

 
xi 

 

Acknowledgements 

Acknowledgements 

I would like to thank my dissertation coordinator, Paulo Branco, for accepting my candidature in this 

theme, my co-coordinator, Eduardo Sarquis, for his never ending patience in discussing my doubts and 

questions along the thesis and finding an answer to them. Also, to Nuno Melo, for these last months of 

companionship while we both worked on our thesis. 

To Carolina Lopes for her true friendship through these years in college and for life. The second best 

thing university gave me was the master’s degree, the first was her friendship. 

For all my closest friends Frederico Arouca, Miguel Pinto, Nuno Diogo, Tomás Santana, I thank you 

for giving me fun and relaxing ways of distracting me of all pressure college matters. 

To my parents, my sister and my brother for all the love, for always supporting me and believing in 

me this would not have happened if it were not for you. 

  



 

 
xii 

 

  



 

 
xiii 

 

 

Table of Contents 

Table of Contents 

 

Abstract ............................................................................................................................................. vii 

Resumo .............................................................................................................................................. ix 

Acknowledgements ............................................................................................................................ xi 

Table of Contents ............................................................................................................................. xiii 

List of Figures .................................................................................................................................... xv 

List of Tables .................................................................................................................................... xix 

List of Acronyms ............................................................................................................................... xxi 

List of Symbols ............................................................................................................................... xxiii 

1 Introduction .................................................................................................................................. 1 

1.1 Motivation ............................................................................................................................ 2 

1.2 Problem Description ............................................................................................................ 3 

1.3 Objectives ............................................................................................................................ 5 

1.4 Thesis Structure................................................................................................................... 5 

2 Literature Review ......................................................................................................................... 7 

2.1 Fundamental Concepts ....................................................................................................... 8 

2.1.1 Photovoltaic effect ....................................................................................................... 8 

2.1.2 Photovoltaic panel configuration.................................................................................. 8 

2.1.3 Inverter configuration ................................................................................................... 9 

2.1.4 One diode and five parameter model for solar cell .................................................... 11 

2.1.5 I-V curve .................................................................................................................... 13 

2.2 State of the art ................................................................................................................... 14 

2.2.1 Overview .................................................................................................................... 14 



 

 
xiv 

 

2.2.2 Definition of fault ........................................................................................................ 15 

2.2.3 Monitoring brief history .............................................................................................. 16 

2.2.4 Faults in photovoltaic panels ..................................................................................... 18 

2.2.5 Artificial neural networks (ANN) ................................................................................. 20 

2.2.6 Artificial neural networks in fault detection/diagnosis ................................................ 24 

3 Model interpretation ................................................................................................................... 27 

3.1 Model explained................................................................................................................. 28 

3.2 Experimental procedure – Testing the model .................................................................... 31 

4 Database construction ............................................................................................................... 47 

4.1 Overview ............................................................................................................................ 48 

4.2 Fault creation ..................................................................................................................... 48 

4.3 Plot observation and comparison ...................................................................................... 51 

4.4 Database structure ............................................................................................................ 52 

5 Artificial neural network development ........................................................................................ 55 

5.1 Artificial neural network inputs ........................................................................................... 56 

5.2 Pre-processing data .......................................................................................................... 56 

5.3 Output code ....................................................................................................................... 56 

5.4 Algorithms .......................................................................................................................... 57 

6 Testing an artificial neural network ............................................................................................ 65 

6.1 Outdoor testing conditions ................................................................................................. 66 

6.2 Results from outdoor testing .............................................................................................. 66 

6.3 Results from model ............................................................................................................ 72 

6.4 Summary of results ............................................................................................................ 73 

7 Conclusions ............................................................................................................................... 75 

References ....................................................................................................................................... 79 

A. Appendix A: Wires’ resistance ............................................................................................... 83 

B. Appendix B: Simulation plots ................................................................................................. 85 

C. Appendix C: Database flowchart ........................................................................................... 89 

D. Appendix D: Outdoor test results .......................................................................................... 91 

A. Annex A: Equipment datasheets ........................................................................................... 97 



 

 
xv 

 

 

List of Figures 

List of Figures 

Figure 1.1 - Installed capacity of solar energy in the world [2] ........................................................... 2 

Figure 1.2 - Representation of visual observation of photovoltaic panels [4] .................................... 3 

Figure 1.3 - Thermal image of photovoltaic panels [5] ....................................................................... 3 

Figure 1.4 - Basic structure of a photovoltaic system [6] ................................................................... 4 

Figure 2.1 – Visual representation of photovoltaic effect [7] .............................................................. 8 

Figure 2.2 - Representation of the basic structures in a photovoltaic panel [8] ................................. 9 

Figure 2.3 – Connection of PV modules to a central inverter [9] ..................................................... 10 

Figure 2.4 - Connection of PV modules using string inverters [9] .................................................... 10 

Figure 2.5 - Connection of PV modules using micro-inverters [9] .................................................... 11 

Figure 2.6 - One diode and five parameter model [10] .................................................................... 12 

Figure 2.7 - I-V curve with the most important parameters: Isc, Impp, Voc, Vmpp, PT, Pmpp [11] ........... 13 

Figure 2.8 - Influence of Rs and Rsh on an I-V curve [11] ................................................................. 14 

Figure 2.9 - Typical failure scenarios for wafer-based crystalline photovoltaic modules [11] .......... 19 

Figure 2.10 - The basic neuron [21] ................................................................................................. 21 

Figure 2.11 - Example of an artificial neural network [22] ................................................................ 22 

Figure 2.12 - Recommended method of dividing a data set [25] ..................................................... 24 

Figure 2.13 - System design [27] ..................................................................................................... 24 

Figure 3.1 - The two panels tested in the laboratory: left side (broken glass and a broken cell), right 

side (healthy panel) .......................................................................................................................... 31 

Figure 3.2 - Illustration of the setup in the energy laboratory ........................................................... 32 

Figure 3.3 - Connection of the cell in a panel to the I-V curve tracer system .................................. 33 

Figure 3.4 – Overall connections of the system ............................................................................... 33 

Figure 3.5 – Custom design track .................................................................................................... 34 

Figure 3.6 – Hall sensor correction .................................................................................................. 35 

Figure 3.7 - Experimental result of an I-V curve with an irradiance of 1000 W/m2 .......................... 36 



 

 
xvi 

 

Figure 3.8 - Experimental result of an I-V curve with an irradiance of 230 W/m2 ............................ 36 

Figure 3.9 – Experimental procedure ............................................................................................... 37 

Figure 3.10 – Corrections for measured data .................................................................................. 38 

Figure 3.11 – Errors due to equipment ............................................................................................ 38 

Figure 3.12 - Diagram representing all error steps .......................................................................... 39 

Figure 3.13 - Broken cell I-V curve for the following irradiances: 230 (blue), 400 (red), 600 (cyan), 

800 (yellow), 1000 (green) [W/m2] .................................................................................................... 40 

Figure 3.14 – Broken glass I-V curve for the following irradiances: 230 (blue), 400 (red), 600 (cyan), 

800 (yellow), 1000 (green) [W/m2] .................................................................................................... 41 

Figure 3.15 – Healthy panel I-V curve for the following irradiances: 230 (blue), 400 (red), 600 (cyan), 

800 (yellow), 1000 (green) [W/m2] .................................................................................................... 42 

Figure 3.16 - Model and experimental results, in blue experimental and black model .................... 42 

Figure 3.17 - Model, with ratio (0.72) multiplied by the irradiance, in black and experimental results 

in blue ............................................................................................................................................... 43 

Figure 3.18 – Outdoor experimental procedure ............................................................................... 43 

Figure 3.19 - Healthy panel in standard operation ........................................................................... 45 

Figure 3.20 - Model vs Outdoor experiment comparison, without temperature adjustments .......... 46 

Figure 3.21 - Model vs Outdoor experiment comparison, with temperature adjustments ............... 46 

Figure 4.1 - Equivalent circuit of a cell under the effect of a short circuit......................................... 49 

Figure 4.2 - Equivalent circuit of a cell under the effect of a shade ................................................. 50 

Figure 4.3 - Methods applied to simulate chosen faults and visual representation of said faults .... 51 

Figure 4.4 - Standard and Short circuit, both with an irradiance of 1000 W/m2 and temperature of 

70ºC .................................................................................................................................................. 52 

Figure 5.1 – Illustrative example of a performance plot ................................................................... 59 

Figure 5.2 – Performance graph of the 10000 database with no noise added ................................ 60 

Figure 5.3 – Performance graph of the 20000 database with noise added ..................................... 60 

Figure 5.4 - Illustrative example of a confusion matrix ..................................................................... 61 

Figure 5.5 - Confusion matrices of all steps in a learning process of an ANN, in this specific case 

10000 normalized entries with no noise added ................................................................................ 62 

Figure 5.6 – Confusion matrices of all steps in a learning process of an ANN, in this specific case 

20000 normalized entries with noise added ..................................................................................... 63 

Figure 6.1 - Outdoor results after passing through the trained model ............................................. 67 



 

 
xvii 

 

Figure 6.2 - I-V curves of a short circuit in a substring (24 cells) of the outdoor experiments ......... 71 

Figure 6.3 - Simulation results after passing through the trained model.......................................... 72 

Figure B.1 – Normal and shading, in one cell (SH1), in two cells in different substrings (SH11) and 

three cells in different substrings (SH111),  with a decrease of 50 W/m2 in irradiance, both have G = 

1000 W/m2 and T = 70ºC.................................................................................................................. 86 

Figure B.2 - Normal and shading, in one cell (SH1), in two cells in different substrings (SH11) and 

three cells in different substrings (SH111), with a decrease of 500 W/m2 in irradiance, both have G 

= 1000 W/m2 and T = 70ºC .............................................................................................................. 86 

Figure B.3 – Short circuit and shading, in one cell (SH1), in two cells in different substrings (SH11) 

and three cells in different substrings (SH111), with a decrease of 50 W/m2 in irradiance, both have 

G = 1000 W/m2 and T = 70ºC........................................................................................................... 87 

Figure B.4 - Short circuit and shading, in one cell (SH1), in two cells in different substrings (SH11) 

and three cells in different substrings (SH111), with a decrease of 500 W/m2 in irradiance, both have 

G = 1000 W/m2 and T = 70ºC........................................................................................................... 87 

Figure B.5 - Shading, with a decrease of 50 W/m2 in irradiance, and the other with a decrease of 500 

W/m2 both, in one cell (SH1), in two cells in different substrings (SH11) and in three cells in different 

substrings (SH111), both have G = 1000 W/m2 and T = 70ºC ......................................................... 88 

Figure C.1 – Flowchart of database ................................................................................................. 90 

Figure A.1 - Multimeter Datasheet ................................................................................................... 98 

Figure A.2 – Solar meter datasheet ................................................................................................. 99 

Figure A.3 – Ammeter datasheet ................................................................................................... 100 

Figure A.4 - DAQ datasheet ........................................................................................................... 100 

 

  



 

 
xviii 

 

 

  



 

 
xix 

 

List of Tables 

List of Tables 

Table 2.1 - Evolution of PR from the 80s until the beginning of the 21st century [15] ..................... 17 

Table 2.2 - Categories of power loss [11] ........................................................................................ 20 

Table 2.3 - List of possible dependencies of power losses [11] ....................................................... 20 

Table 2.4 - Classification of PV array faults [26] .............................................................................. 25 

Table 2.5 - Types of faults occurring in a PV array [16] ................................................................... 25 

Table 3.1 - Panel's Datasheet .......................................................................................................... 32 

Table 3.2 - Behaviours tested outdoor ............................................................................................. 44 

Table 3.3 - Irradiances and temperatures related to figure 3.19 ...................................................... 45 

Table 4.1 - Types and subtypes of operation simulated using the model ........................................ 49 

Table 4.2 - Example of a row in a database, with the number of components below their respective 

names ............................................................................................................................................... 53 

Table 4.3 - Total combinations possible using the random database .............................................. 54 

Table 5.1 - Modes of operation and their respective output code .................................................... 57 

Table 5.2 – Database division in ANN ............................................................................................. 57 

Table 6.1 - Output results of standard condition, from outdoor testing, after passing through the 

mathematical model ......................................................................................................................... 67 

Table 6.2 - Output results of short circuit condition, from outdoor testing, after passing through the 

mathematical model ......................................................................................................................... 68 

Table 6.3 - Output results of one cell shading condition, from outdoor testing, after passing through 

the mathematical model ................................................................................................................... 68 

Table 6.4 - Output results of two cell shading, one in each substring, condition, from outdoor testing, 

after passing through the mathematical model ................................................................................ 69 

Table 6.5 - Output results of two cell shading, two in each substring, condition, from outdoor testing, 

after passing through the mathematical model ................................................................................ 70 

Table A.1 – Measurements, of one cell, for the calculation of the wires’ resistance ....................... 84 

Table A.2 – Error computation for correction related to the wires’ resistance ................................. 84 

Table D.1 – Standard behaviour outdoor results, normalized .......................................................... 92 



 

 
xx 

 

Table D.2 – Short circuit behaviour outdoor results, normalized ..................................................... 92 

Table D.3 – Shading, of one cell in one substring, outdoor results, normalized .............................. 93 

Table D.4 - Shading, of two cells, one in each substring, outdoor results, normalized ................... 94 

Table D.5 - Shading, of two cells one in each substring, outdoor results, normalized .................... 95 

 

 

 

  



 

 
xxi 

 

List of Acronyms  

List of Acronyms 
AC 

AI 

Alternate current 

Artificial intelligence 

ANN 

IEC 

Artificial neural network 

International electrotechnical commission 

CEC California energy commission 

DAQ Data acquisition 

DC Direct current 

IST Instituto superior técnico 

M&D 

LoG 

Maintenance & diagnostics 

Level of granularity 

MPPT Maximum power point tracker 

MSE Minimum square error 

NOCT Normal operating cell temperature 

Nsc Number of short-circuited cells 

Nsh Number of shaded cells 

P&O Perturb & observe 

PC Personal computer 

PID Potential induced degradation 

PR Performance ratio 

PV Photovoltaic 

SC Short-circuit 

SH Shade 

STC Standard test conditions 

  

 

  



 

 
xxii 

 

  



 

xxiii 
 

List of Symbols 

List of Symbols 

  

αIsc Temperature coefficient of short circuit current 

αsc,ref Reference value for temperature coefficient of short circuit current 

ꞵ Coefficient for the power generated 

ꞵVoc Temperature coefficient of open circuit voltage 

ꞵVoc,ref Reference value for temperature coefficient of open circuit voltage 

Θa Ambient temperature 

∆Pl Tolerance of the power on the module label 

∆Pm Uncertainty of the power module measured 

∆T Increment of temperature 

a1,a2,a3,a4 Fitting parameters 

adjust Temperature coefficient adjustment factor 

ce Cross-entropy 

Eg Energy bandgap 

Eg,ref Reference energy bandgap 

G Irradiance 

Gi Instantaneous irradiance 

GSTC Irradiance at STC 

H Humidity 

i Number of strings in parallel 

I Current 

Impp Maximum power point current 

Iph Photocurrent 

𝐼𝑝ℎ𝑐𝑒𝑙𝑙 
Photocurrent of a cell 

Is Saturation current 

Is,ref Reference saturation current 

Isc Short circuit current 

Isd Bypass diode current 

j Number of substrings 

k Number of cells in a substring 

K Boltzmann’s constant 

M Mechanical load 

n Diode ideality factor 



 

xxiv 
 

Ns Number of cells in series 

Pac Alternate current power 

Pi Instantaneous power 

Pl Power on the module label 

Pm Power module measured 

Pmpp Maximum power point 

Pnom Nominal power 

Psh Percentage of shading 

PT Virtual power point 

q Electron’s charge 

R Resistance 

Rs Series resistance 

Rs,ref Reference series resistance 

Rsh Shunt resistance 

Rsh,ref Reference shunt resistance 

S Shading 

T Temperature 

t Target 

TC Thermal cycling 

𝑇𝑐𝑒𝑙𝑙𝑘 Cell temperature 

TD Bypass temperature 

U Ultraviolet radiation 

V Voltage 

VD Diode voltage 

Vmpp Maximum power point voltage 

Voc Open circuit voltage 

Vref Operating voltage 

Vt Thermal junction voltage 

y Output 

  

 

 

 



 

1 
 

 

Chapter 1 

Introduction 

1 Introduction 

A brief overview of the growth of photovoltaic systems in nowadays energy production scheme. Reasons 

for its development and foremost problem in maintaining performance over long periods are also brought 

up in the motivation and scope for the thesis. 
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1.1 Motivation 

Along the years, there has been a shift of paradigms in ways of producing energy, with observations 

and conclusions that non-renewable methods of transforming energy into electricity (coal, natural gas, 

nuclear) were polluting our world. Stopping and decreasing pollution increases the switch to renewable 

energies. Solar energy has seen increased investment in the last few years. It has some unique perks, 

installation in almost every place due to its flexibility in size, it is flexible in power sizing and noise-free 

[1]. According to [2], from 2010 to 2017, the installed capacity of solar energy in the world expanded 

from 50.000 MW to 400.000 MW, a 700% increase, demonstrated in Figure 1.1. 

 

Figure 1.1 - Installed capacity of solar energy in the world [2] 

 

A decrease in photovoltaic panels and equipment costs, special remunerations to renewable 

energies, more efficient panels all brought investment to this technology. Some disadvantages persist 

being availability one of the main problems. With all the developments made in new photovoltaic panels, 

the efficiency of converting energy has increased. However, these were not tested in real conditions, 

only in ideal ones and not for an extended period of such as their lifespan (25 years). These require a 

continuous operation to keep availability and compete with other forms of producing energy. When a 

fault occurs in a system, less energy is produced. Some faults may even damage the panels 

permanently, and all these flaws reduce the income. Also, there may be abnormal behaviour which is 

only temporary; however, if not detected, can lead to underperformance and in the future can develop 

into a fault. To maintain the performance, to the maximum, monitoring of the system is required [3].   
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1.2 Problem Description 

Photovoltaic systems rely on continuous operation when solar irradiation is present, to keep 

availability to the maximum. If a fault arises a decrease in energy will appear, translating into less profit. 

To maintain the energy produced by the photovoltaic panels to the maximum monitoring of the system 

should be implemented and optimized [1]. 

Monitoring already exists in many forms, for example visual observation where a person inspects 

visually, only, the condition of the system (Figure 1.2) to detect shading or soiling in the surface of the 

panels. Another example is thermal observation, where through heat sensors, the panel’s temperature, 

in their surface, is observed and compared to standard limits (Figure 1.3).  

 

 

Figure 1.2 - Representation of visual observation of photovoltaic panels [4] 

 

 

Figure 1.3 - Thermal image of photovoltaic panels [5] 
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These conventional methods are expensive, not very efficient and only detect significant 

malfunctions. Minor faults lower the energy causing major malfunctions with time and forcing higher 

investment for not resolving the fault earlier and with substitution of the equipment instead of repairing 

the minor flaw. More recently, a comparison between models which calculate, given the proper inputs, 

the expected energy that the system should be producing and then compare it with the actual energy 

retrieved.   

In this thesis, a method for detection and diagnosis of failures is proposed. It monitors the electrical 

parameters (voltage, current) and detects if the output power is not in the expected level, then it 

determines which is the most probable fault. This method relies on the fact of every system now and in 

the last few years has a digital inverter making it simple to collect the electrical parameters. As can be 

seen in Figure 1.4, the basic structure of a photovoltaic system, where the inverter is an essential part 

of it to connect to the grid and AC loads. 

 

Figure 1.4 - Basic structure of a photovoltaic system [6] 

 

Panels change their behaviour with irradiance and temperature in a way that both are critical in 

determining variations in power delivered by the panels. Therefore, these variables are inputs in the 

fault detection method to be developed. Collecting these weather parameters may resort to weather 

data servers, depending on the country, or to sensors installed near the system. 

Collecting electrical parameters and weather data over long periods requires storage and analysis 

of the data. To determine if the system is working as it should a data processing method will compare 

typical values of power to the ones observed. If the system is considered to be with fault, then every 

parameter will be evaluated to determine which fault may be. First using a model developed to simulate 
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standard and faulty behaviours the values will be obtained and stored to use in the training of an artificial 

neural network. Through manipulation and optimization of the artificial intelligence method, these 

behaviours will converge into different patterns.  

The method proposed should be able to determine if the system, knowing its topology and 

specifications, has faults, temporary abnormal behaviour or is working as intended. If the system is 

faulty, the approach will provide a probability of which fault may have occurred. 

1.3 Objectives 

The main objective of the work is to develop a method capable of detecting when a photovoltaic 

system is with a fault or not and give a probability of which faults may have occurred. The goal is to use 

only simple electrical parameters, such as voltage and current from the inverter and weather data, more 

specifically temperature and irradiance. These last provided by an online server or weather sensors 

located in the site of the system. 

Specific objectives: 

❖ Study and comprehension of the most common faults in photovoltaic systems. Observation of 

the behaviour of the electrical parameters when faults occur. 

❖ Verify the theoretical knowledge of faults with a simulation model. 

❖ Validate the simulation model with an experimental procedure. 

❖ Using the simulation model, construct a database with references of standard, and faulty 

behaviours. 

❖ Train an artificial neural network to discover if a system has a fault or not and classify it. 

❖ Optimize the artificial neural network. 

❖ Test the artificial neural network in a real system.  

1.4 Thesis Structure 

This thesis has seven chapters described as follows: 

➢ Chapter 1 – Introduction: It presented a motivation for this work and a brief problem description. 

 

➢ Chapter 2 – Theoretical review: Fundamental concepts related to photovoltaic panels and state 

of art. 

 

➢ Chapter 3 – Experimental procedure: Model utilized in the simulation of the behaviours and 

experimental procedure related to the interpretation of the model. 
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➢ Chapter 4 – Database construction: Detailed development of the database. 

 

➢ Chapter 5 – Artificial neural network: Comprehensive look in the training and optimization of the 

neural network.  

 

➢ Chapter 6 – Testing an artificial neural network: Outdoor experimental procedure and 

comparison with the results obtained from the neural network. 

 

➢ Chapter 7 – Conclusions: Overview of the results and recommendations for future work.  
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Chapter 2 

Literature Review 

2 Literature Review 

This chapter provides essential knowledge of previous models and concepts needed to understand 

further chapters in the thesis. From an electrical point of view and a programming view. Demonstrates 

a historical evolution of electric measuring methods to give an understanding of the problem itself.  
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2.1 Fundamental Concepts 

2.1.1  Photovoltaic effect 

Photovoltaic panels generate DC power with the incidence of sunlight, which causes the 

photoelectric process. This photoelectric effect consists of the emission of electrons when light is applied 

to the material. In this specific case, in the PV systems, it is called the photovoltaic effect as the electrons 

are still contained in the material. In the panels, there is a junction between two types of semiconductors 

n-type and p-type called the p-n junction. There the electrons will move towards the p-side and holes 

move to the n-side, then the electrons are caught by the metallic bands in the cell, flowing through them, 

generating current and voltage. Allowing the system to transform the energy from light into electric 

energy. In Figure 2.1, the effect illustrates as it occurs inside the PV panel. It can be seen the solar 

radiation (light rays) hitting the panels and freeing the electrons, though still inside the panel, enabling 

the flow of current [7]. 

 

Figure 2.1 – Visual representation of photovoltaic effect [7] 

2.1.2  Photovoltaic panel configuration 

A brief explanation of the PV panel configuration described and shown for a more straightforward 

analysis in the following chapters. In Figure 2.2, it shows the necessary structures in which a PV panel 

can be divided, from the smallest to the panel itself. The simplest element is the cell, which enables the 

photovoltaic effect. Followed by a module, which consists of cells in series with a bypass diode in 

parallel. Finally, an array to link all the modules. Bypass diodes help in when an open circuit is detected, 

or current values determined to be below a certain threshold, allowing the current to flow through the 

diode.  If there were not a diode, there would be no power in case there was no current, or it would 

produce a low value, as the modules are all connected in series. The array is encapsulated in a hard 

case with a select glass mirror in front and ethylene-vinyl acetate between the glass and the case to 
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protect the cells. 

 

Figure 2.2 - Representation of the basic structures in a photovoltaic panel [8] 

 

Panels have the same configuration; however, they can vary in the number of elements, the number 

of cells in series can change depending on the panel. In the laboratory the panel has 72 cells in series, 

meaning the module, or substring has a third of that value, 24 cells. 

 

 

2.1.3  Inverter configuration 

An inverter is required in most systems, to convert DC to AC. For different configurations of PV 

systems, and considering their power and their application, a specific type of inverter may be used to 

maximize the power/cost ratio. Commonly types of inverters and their connection to the system are 

presented for better representation of the problem to the reader. There are three typical inverters: 

 

• Central inverter: connects to the end of the module string of a PV system, displaying 

the power produced by the whole system. In larger systems is a cheaper option even 

though a less accurate compared to the rest.  
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Figure 2.3 – Connection of PV modules to a central inverter [9] 

 

 

• String inverter: These connect, each to a string of PV modules, showing the power 

produced by a string.  
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Figure 2.4 - Connection of PV modules using string inverters [9] 

 

• Micro inverter: This type of inverter connects to a single PV module, a higher level of 

detection however it also has the highest cost, and it increases with the size of the 

system, more panels translates into more cost. 
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Figure 2.5 - Connection of PV modules using micro-inverters [9] 

 

2.1.4  One diode and five parameter model for solar cell 

Representing a solar panel in a simulation environment requires a model for approximation of the 

characteristics observed in a real environment. Several models have been developed and used over 

the years [10]. One of the most used is the one diode and five parameter model, due to a balanced ratio 

between precision and computation cost. Its name is self-explanatory it possesses a single diode, and 

it has five unknown parameters to be calculated, those being Iph, Is, n, Rs, Rsh. The figure below, Figure 

2.6, shows the model, where it can be seen the photodiode current (Iph), which simulates the current 

obtained from the incident solar irradiance in the cell. The diode simulates the behaviour of the pnp 

junction. Diode’s characteristic equation (1): 

𝐼𝐷 = 𝐼𝑠 (exp (
𝑉𝐷
𝑛 ∙ 𝑉𝑡

) − 1) (1) 

 

where VD is the voltage across the diode, Vt is the junction thermal voltage, T is the temperature, k 

is the Boltzmann constant (8.617332478*e-5 eV/K), q is the electron’s charge (1.602*10-19 C) 

 

𝑉𝑡 =
𝑘 ∙ 𝑇

𝑞
(2) 

 

From the equation of the diode appear two parameters, the diode ideality factor (n) and the saturation 

current (Is). In parallel with it is a shunt resistance (Rsh). It represents the shunt path for the current flow 

bypassing the active solar cell, defines the recombination of electrons and holes. A series resistance 

(Rs) defines the losses in the connections between the metal contact and the silicon, the top and rear 

metal contacts.  



 

12 
 

 

Figure 2.6 - One diode and five parameter model [10] 

 

Defining this equivalent system is the following equation: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 (exp (
𝑉 − 𝑅𝑠 ∙ 𝐼

𝑛 ∙ 𝑁𝑠 ∙ 𝑉𝑡
) − 1) −

𝑉 + 𝑅𝑠 ∙ 𝐼

𝑅𝑠ℎ
(3) 

where Ns is the number of cells in series. 

Determining the five unknown parameters (Iph, Is, n, Rs, Rsh) requires knowledge of three major points 

of the I-V curve, the short circuit, where the current is at a maximum and voltage is zero, the open-circuit 

voltage, maximum voltage value and current at zero and the maximum power point, defining the 

correlation between current and voltage that gives the maximum value of power, giving three equations. 

The remaining two equations are obtained from the derivative of the short circuit condition in order to 

the voltage (6) and from the derivative of the maximum power point condition in order to the voltage (8). 

Now having five equations is possible to discover the five unknown parameters: 

𝑆ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 (0, 𝐼𝑠𝑐) → 𝐼𝑠𝑐 = 𝐼𝑝ℎ − 𝐼𝑠 (exp (
𝑅𝑠 ∙ 𝐼𝑠𝑐
𝑛 ∙ 𝑁𝑠 ∙ 𝑉𝑡

) − 1) −
𝑅𝑠 ∙ 𝐼𝑠𝑐
𝑅𝑠ℎ

 (4) 

 

  𝑂𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 (𝑉𝑜𝑐 , 0) → 0 = 𝐼𝑝ℎ − 𝐼𝑠 (exp (
𝑉𝑜𝑐

𝑛 ∙ 𝑁𝑠 ∙ 𝑉𝑡
) − 1) −

𝑉𝑜𝑐
𝑅𝑠ℎ

(5) 

 

𝑑𝐼

𝑑𝑉
│ 𝑉=0
𝐼=𝐼𝑠𝑐

= −
1

𝑅𝑠ℎ
(6) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 (𝑉𝑚𝑝𝑝, 𝐼𝑚𝑝𝑝) →

𝐼𝑚𝑝𝑝 = 𝐼𝑝ℎ − 𝐼𝑠 (exp (
𝑉𝑚𝑝𝑝 + 𝑅𝑠 ∙ 𝐼𝑚𝑝𝑝

𝑛 ∙ 𝑁𝑠 ∙ 𝑉𝑡
) − 1) −

𝑉𝑚𝑝𝑝 + 𝑅𝑠 ∙ 𝐼𝑚𝑝𝑝

𝑅𝑠ℎ
(7)

 

 

𝑑𝑃

𝑑𝑉
│𝑉=𝑉𝑚𝑝𝑝
𝐼=𝐼𝑚𝑝𝑝

= 0 (8) 
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Solving this system of equations analytically can prove to be difficult, preferably there is a better way 

to solve them, that is, using an iteration method. As stated previously an I-V curve should be presented 

to calculate these parameters as it will give the short circuit value and the open circuit one.  From 

equations (6,7,8), the parameters (Rs, Rsh, n) can be retrieved and after from equations (1,3), Is, and Iph 

can be obtained. These require iterations of the equations and to converge in a fast and reliable fashion 

proper initial values should be chosen. 

2.1.5  I-V curve 

When talking about solar cells, a usual way of finding out their characteristics and their behaviour is 

with an analysis of the I-V curve. A typical I-V module measurement system consists of a light source, 

to activate the cell’s capability of transforming light irradiation in electricity, an external load that is forced 

to vary from zero to a high value, a temperature gauge and an acquisition system to retrieve the values 

of voltage and current. From this curve, three significant points are retrieved and identified, the short 

circuit current (Isc), the open-circuit voltage (Voc) and the maximum power point (Vmpp, Impp). The short 

circuit current is the current that passes through the cells when the voltage is close to zero, and the 

open-circuit voltage is the maximum voltage from a PV module when the current is zero. To obtain an 

I-V curve an external load should be put to zero, and from there the short circuit current is known, then, 

with the variation of the external load to a high value, the curve will be drawn until it reaches the open-

circuit voltage. An example of an I-V curve is shown below in Figure 2.7. 

 

Figure 2.7 - I-V curve with the most important parameters: Isc, Impp, Voc, Vmpp, PT, Pmpp [11] 

 

Going forward, I-V curves will be a staple in reaching conclusions and explaining processes, so now 
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a brief explanation of the curve itself will be given. 

In the curve, there are two values that each defines a slope, one from the zero voltage to the 

maximum power point and another from the maximum power point to the open-circuit voltage value. 

The first one changes with the shunt resistance (Rsh), an increase in this resistance brings the slope to 

a more horizontal configuration. The second slope changes with the series resistance (Rs), an increase 

in this value, diminishes the slope thus reducing the maximum power. In Figure 2.8, a demonstration of 

what happens when variating both resistances is shown. 

 

 

Figure 2.8 - Influence of Rs and Rsh on an I-V curve [11] 

The utilization of series resistance and shunt resistance is only valid if the cells have the same 

manufacturing process and parameters [11]. 

2.2 State of the art 

2.2.1  Overview  

A PV system may present malfunctions over the course of its lifespan. These can occur anytime and 

are divided as electrical failures or mechanical failures. Faults of that kind will cause a reduction of the 

output power resulting in economic losses because of the lower power generated compared to the 

expected or if needed the replacing of the equipment. Other reducing power problems may be temporary 

and won’t damage the structure of the system, however if not timely and adequately attended may 
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originate major malfunctions. All can damage the system over the course of time, preventing the system 

of achieving its maximum performance and to be reliable as an energy source of electricity. Other energy 

sources such as coal have much higher reliability as when energy is requested the coal power plants 

can meet the demand with very fast response time. Solar PV only produce energy during daytime, they 

need solar irradiance to be at a level only reachable at daytime and with solar exposure, allowing the 

transformation of solar energy to electricity by the solar cells. Thus, they need to be available to collect 

the energy from the sun and inject it directly to the load or to store it in batteries. For all reasons stated 

reliability and performance need to be improved or maintained at the highest, a better maintenance and 

fault diagnosis needs to be implemented for it to happen. Reducing the economic losses will be a priority 

thus monitoring PV systems with a fault diagnosis method can help to track faults, localize them and 

diminish their repercussions in the electrical parameters. Gaining knowledge of faults would help 

maintenance in tracking the malfunction and access the best option to resolve it. For difficult places to 

reach, panels installed in the city are usually located in the rooftops, the maintenance crew could be 

called only when needed resulting in a lower economical stress and a better scheduled maintenance. 

Other adversities resulting in a permanent damage to the system will tell the breaking point where it is 

necessary the replacement of the damaged equipment. 

A brief history of monitoring in photovoltaic systems is described to understand the evolution of 

monitoring, investigation errors made, and breakthroughs discovered. 

In this chapter will be revised studies mainly using system’s output power considering weather 

conditions, observing the voltage and current being produced by the system, to detect if the system is 

running at its standard efficiency. It is also essential to collect and analyse each system data, so 

abnormalities can be studied and recognized earlier. Allowing to construct a proper database for 

different faults caused by various factors, improving the detection time of a flaw and the probability of 

the type of fault. In panels developed in the next years, with these databases, they can be improved to 

be more resilient to these faults studied and documented. 

2.2.2  Definition of fault 

Firstly, a look at the known faults and their complications is analysed thoroughly to understand which 

constitute a real problem to PV systems and which can be neglected. A definition needed to start the 

analysis is to define what is considered a fault in a PV system, it is an effect that lowers the power 

delivered by the module which cannot be reversed by normal operation. Autor’s differ in the percentage 

of reduction in the output power to be considered a fault, which can be related to the errors on the 

measuring devices utilized. The definition of power loss failure is, according to [11], if the power module 

measured Pm, based on IEC 60904, plus the uncertainty of the measurement ∆Pm, which depends on 

the measurement error of the equipment used, is lower than the power on the module label Pl minus the 

tolerance stated on the label ∆Pl, shown in equation 9, a failure exists. 

𝑃𝑚 + ∆𝑃𝑚 < 𝑃𝑙 − ∆𝑃𝑙  (9) 

There are occurrences where the output power decreases temporarily, as stated before it does not 



 

16 
 

qualify as a fault, it is seen as a failure of planning or maintenance. Still it should be detected to allow a 

corrective planning. Also, the modules can have malfunctions in their ‘early life’, during their first hours 

of functioning, due to manufacturing mistakes. In some reports such as [11] a defect is considered to be 

a broader definition, including the definition of failure and also temporary power losses. 

2.2.3  Monitoring brief history 

Monitoring started with day-by-day observations of the power output produced, where comparisons 

between days were made. It proved to be a not very reliable way of determining if the system was 

performing well. It did not consider the temperature and irradiance and from day to day they can change 

very significantly. After came the simple measurements of common electrical parameters, it was 

straightforward as it only compared the difference between measured parameters and predictions from 

a base model [12]. This method proved not to be enough, unexplained power losses needed to be better 

studied and understood. Models were developed to estimate the output power given the parameters of 

the PV module (Isc, Voc, Rs, Rsh, Is), called one diode and five parameter model, this is considered to be 

the most used model given its relation between fast computation and overall accuracy [13]. One of the 

many unknowns was when should the measurements be taken and how should the comparison with 

the known model be made, i.e. if it were to compare a PV panel under total shading conditions with the 

model it would imply the breakdown of the panel and substitution of it. Now can be understood that a 

monitoring system should have time intervals to observe the output of the system and determine the 

cause of the problem. Many solutions have been proposed, aiming in a real time prediction of the 

system’s output power, based on weather conditions, and comparing the model’s output power with the 

actual one measured from the system [14]. The problem resides in determining what caused the 

difference between the calculated by the model and the measurements. A suitable monitoring system 

should answer the following questions: what should be measured, how to measure it and how to handle 

those measurements. The first question relates to the system overall configuration and variables to 

store. About its configuration, it should be made clear the number of panels in a string as string inverters 

are the most common. In this thesis it was chosen the string inverter due to it being the most used in 

systems.  

The overall performance of the whole system depends on the performance of each subsystem, 

where it reaches the most basic structure the cell. Here dwells on the overall accuracy of maintenance 

& diagnosis and its expense, increasing the first also increases the latter. An initial classification was 

created for rough levels of M&D electrical techniques based on “level of granularity”. Lowest LoG is a 

more rustically monitoring, where the system is considered equal, retrieving only measurements in the 

inverter and higher LoG start to have more specific and detailed monitoring [12]. The simplest trends in 

monitoring are based in checking only the instantaneous power generated by the PV system, at either 

the DC side or the AC side. The power is measured and converted into energy produced by the system. 

To understand how the system is performing, a ratio was developed, called Performance ratio, PR. It 

correlates the measured instantaneous power, Pi, and the nominal power, Pnom. Also, to correct the ratio 

it is multiplied the standard test condition irradiance, GSTC, over the instantaneous irradiance, Gi [12]. 
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𝑃𝑅 =
𝑃𝑖
𝑃𝑛𝑜𝑚

𝐺𝑆𝑇𝐶
𝐺𝑖

 (10) 

 

 

The ratio gives an estimate of how the system is performing however it fails to consider the 

temperature, a factor decisive in the output power. Having that in mind a new ratio was proposed to 

support temperature: 

 

𝑃𝑅(𝑇) =
𝑃𝑖

𝑃𝑛𝑜𝑚 + 𝛽 ∙ ∆𝑇

𝐺𝑆𝑇𝐶
𝐺𝑖

  (11) 

 

A coefficient for the power generated (ꞵ) and an increment with respect to 25ºC (∆T) to the formula. 

Even with these alterations it was not enough to produce accurate approximations, for the ratio used 

Pnom which does not consider several factors leading to a deviation from the actual performance of the 

system. So, a new model was proposed to take into account the difference in nominal power, changing 

Pnom to Pac. 

 

𝑃𝑎𝑐 = 𝐺𝑖(𝑎1 + 𝑎2𝐺𝑖 + 𝑎3 log(𝐺𝑖))(1 + 𝑎4(∆𝑇)) (12) 

Where a1, a2, a3 and a4 are fitting parameters, calculated for each installation [12].  

Along the years there has been an increase in PV system’s average PR values, demonstrated by 

studies [15], represented in Table 2.1.  

 

Table 2.1 - Evolution of PR from the 80s until the beginning of the 21st century [15] 

Installed Location Range of PR Avg. PR 

1980s Worldwide 0.50 – 0.75 Individual 
estimates 

1990s Worldwide 0.25 – 0.90 0.66 

1990s Worldwide 0.50 – 0.85 0.65 – 0.70 

1990s Germany 0.38 – 0.88 0.67 

2000s France 0.52 – 0.96 0.76 

2000s Belgium 0.52 – 0.93 0.78 

2000s Taiwan <0.3 – >0.9 0.74 

2000s Germany 0.70 – 0.90 0.84 
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The early PV systems presented large variations between the actual values and the nominal provided 

by the manufacturer’s datasheet. In addition, incorrect installation, ineffective or non-existing MPPT 

tracking. With the adaptation of monitoring systems, important data could be collected and used to 

comprehend the losses and common problems of PV systems. This understanding helped improving 

the maintenance of PV panels. Well maintained systems demonstrated higher PR values. 

Monitoring of electrical parameters required storage and analysis of large amounts of data. This 

motivated the adaptation of advanced data processing techniques such as artificial intelligence and big 

data to better extract useful information [12]. Artificial intelligence and data mining can be split into three 

categories: signal processing, classification and inference. Signal processing extracts characteristics of 

the signals can be given a determined state of health. For this technique normally it is applied a wavelet 

transform or a fast fourier transform. The classification is done by artificial intelligence, from the training 

dataset the algorithm can learn and draw knowledge from it. As the database grows larger the learning 

algorithm can learn the behaviour and nuances of the overall system [12]. Papers and reports enter this 

field of expertise and try using different methods of AI [16][17][18][19]. 

 

2.2.4  Faults in photovoltaic panels 

Faults in photovoltaics can be classified, in a first approximation, into two types: irreversible, caused 

by electrical or mechanical problems. Enumerating some of these are short circuits, open circuits and 

aging of the panels. Other type of faults are the reversible ones, which consist in temporary power losses 

mainly caused by shading or soiling [20]. Another used approach to categorize faults is dividing them in 

lifetime wise of the panels. Three categories: infant-failures, midlife-failures and wear-out-failures, 

presented in Figure 2.9. As the name indicates the infant ones occur in the beginning, after installation, 

these are more prone to happen. Midlife failures are not so usual compared to infant the latter, the end 

if life failures [11].  
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Figure 2.9 - Typical failure scenarios for wafer-based crystalline photovoltaic modules [11] 

 

Studies have been made, to detect and identify faults and their respective location in photovoltaic 

systems. These are three irreversible different categories of faults considered in reports and papers: 

• Ground faults which occur when an inadvertent contact between a conductor and the 

ground or equipment frame is established. Frequently the result of insulation 

breakdown. 

• Line-to-line faults occurring when two lines at different potential establish a connection. 

• Open circuit faults happen when the electric connection suffers an opening, disrupting 

the electric current within that path. 

Ground faults are easier to detect using protection devices and for that reason they will not be 

addressed in this thesis. The focus will be in mismatch faults. Now that some categorization has been 

presented, there will be a more detailed explanation of the most common faults that can happen in a 

photovoltaic system and what the studies say about their effect in the electrical parameters and the 

performance of the system itself. First the flaws caused by external sources such as: glass breakage, 

usually caused by clamping or physical impact, causes loss of performance due to bad enclosure as 

oxygen and water vapor enter through the breaches corroding the cells and the electrical circuit. Also, 

the damage done to the glass will diminish the irradiance absorption from the cells. Likewise transport 

and installation if not properly done can cause this irregularity and others. Lightning strike can interfere 

with bypass diodes function and provoke subsequent safety failures. Not all power losses behave in the 

same manner and as some are critical to correct others are not so in the immediate time. A definition of 

power loss categories is presented in Table 2.2. These different categories explore the various variations 

seen in the power curve over time. 
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Table 2.2 - Categories of power loss [11] 

Power loss category Description 

A Power loss below detection limit <3% 

B Exponential-shaped power loss degradation over time 

C Linear-shaped power loss degradation over time 

D Power loss degradation saturates over time 

E Degradation in steps over time 

F Miscellaneous degradation types over time 

 

Many factors impact the behaviour of the system, in Table 2.3 the ones more relevant for power loss 

calculations are presented. 

 

Table 2.3 - List of possible dependencies of power losses [11] 

Representative symbol Power loss factor 

T Temperature 

G Irradiance 

I Current 

V Voltage 

H Humidity 

M Mechanical load 

U UV radiation 

TC Thermal cycling 

S Shading 

 

2.2.5  Artificial neural networks (ANN) 

Human brains can process a huge data of information, highly complex and non-linear. They can think 

differently from a computer and can recognize patterns immediately from previous experiences, such 

as recalling a person’s voice or face. In the Figure 2.10 below is represented the mathematical 

description of how a basic neuron in an ANN works. 
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Figure 2.10 - The basic neuron [21] 

 

Artificial neural networks try to mimic this process. An ANN is a machine or algorithm designed to 

model the way the brain performs, they are not programmed to execute specific tasks instead they are 

trained with data sets until patterns are constructed from known inputs and outputs [21]. They can be 

implemented using electronic components or digital programming. It consists primarily in these 

concepts: 

➢ A processor with several units of processing, interconnected, which has the capacity of storing 

experimental or simulated knowledge and make us of it when needed. It presents several 

stages: 

• Knowledge: it must be taught, using data known and tested, it is given to the neural 

network the inputs and the known outputs so it can extract a pattern from them. This is 

described as the learning process. 

• Connections between the neurons, named weights, and bias are utilized to gather the 

acquired knowledge. These will be optimized through the learning process to be able 

to reproduce the pattern in the most suitable way possible. 

This technique is mainly used to recognize patterns, classify data and forecast future events. Its 

behaviour is defined by the individual elements and the way they are connected and by the weight and 

bias of their connection. How do they work? 

• Inputs are chosen and given to the artificial neural network. 

• Input layers are equal to the number of inputs given. 

• The number of hidden layers is chosen. In theory it is  

2

3
𝐼𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟𝑠 +

1

3
𝑂𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟𝑠 = 𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 however in practice it should be tested for 

several until the best solution is found. 

• Output layer comes last and defines the number of outputs wanted. 
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A visual representation of an ANN is shown in Figure 2.11. 

 

 

Figure 2.11 - Example of an artificial neural network [22] 

 

A neural network needs a learning process, where data known is given to it so that it can assimilate 

the pattern. First the inputs must be chosen, this will give the number of input nodes in the input layer. 

After the number of hidden layers is decided, usually only one hidden layer is applied. The increase of 

layers will augment the complexity of the ANN and its computational cost. To finalize the process the 

number of outputs is decided, and for each one an output node is added. Initiating the learning process 

random or pre-determined weights, in the connections between the input nodes and the hidden layer, 

are fabricated. Each connection will have its weight and it will multiply that number by the passing value. 

On the hidden layer an activation function exists to approximate the values of an output, usually sigmoid 

or hyperbolic tangent. A bias is also applied in each hidden layer node and in the output nodes. Again, 

exist weights amid the hidden layer and the output nodes connections. An output for each node is 

reached and compared to the actual output known. Subsequently there is a function that will revise the 

weights and biases for a better approximation to the real value, usually the backpropagation function. 

In the next iteration with other values the weights and biases will be different having been changed by 

the backpropagation function. It computes the input 𝑝𝑗(𝑡) to the neuron j from the outputs 𝑜𝑖(𝑡) of 

predecessor neurons with the sum of the bias 𝜔𝑜𝑗 [23]. 

 

𝑝𝑗(𝑡) =  ∑(𝑜𝑖(𝑡) ∙ 𝜔𝑖𝑗) 

𝑖

+𝜔𝑜𝑗 (13) 

It can be described as mathematical functions, 𝑓(𝑥) that can be viewed as a composition of other 

functions 𝑔𝑖(𝑥), and this also can be decomposed into other functions. Normally, is used the nonlinear 

weighted sum, 
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𝑓(𝑥) = 𝐾 (∑𝜔𝑖𝑔𝑖(𝑥)

𝑖

) (14) 

where 𝐾 serves as the activation function. It provides a smooth transition as input values change so do 

the output, however they do not suffer sudden impactful changes, meaning small input changes translate 

to small output changes [23]. 

Deep neural network is one specific type where the methods for the learning process can be several 

such as stated in [24]: 

• Supervised: trained to produce desired outputs in response to sample inputs; suited for 

modelling, controlling dynamic systems, classifying noisy data and predicting future events. 

This method subdivides in: 

o Classifications: learns to classify new observations from examples labelled data. 

o Regression: describe the relation between a response variable (output) and one or 

more predictor variables (input). 

o Pattern recognition: classifying input data into objects or classes based on key 

features, using either supervised or unsupervised classification. 

• Unsupervised: trained by letting the neural network continually adjust itself to new inputs. Used 

to draw inferences from data sets consisting of input data without labelled responses, used to 

discover natural distributions, categories, and category relationships within data. 

o Clustering: used for exploratory data analysis to find hidden patterns or groupings in 

data. 

ANN can solve these types of problems however they can take a long time or too much computing 

power, to solve this it is better to pre-process the data, focusing on the more relevant attributes in the 

input to achieve the desired output. The inputs should not contain too much information. Forms of 

reducing time and computing power to achieve convergence in the solution: 

• Reduce the dimension of input vectors using component analysis. 

• Perform regression analysis between the network response and the corresponding targets. 

• Scale inputs and targets so they fall in the range [-1,1]. 

• Normalize the mean and standard deviation of the training data set. 

• Use automated data pre-processing and data division when creating networks. 

With improvements the network’s ability to prevent overfitting, problem which occurs when a network 

has memorized the training set however has not learned to generalize to new inputs, improves. Knowing 

when a neural network is overfitting is not an easy task, the first step to avoid this should be dividing the 

train set, the validation set and the test set according to the size of the dataset being used, as 

demonstrated by Figure 2.12. 
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Figure 2.12 - Recommended method of dividing a data set [25] 

 

Usually overfitting produces a small error on the training data set, the problem starts when new data 

is presented to the ANN, not knowing how to generalize it will produce a much larger error. 

 

2.2.6  Artificial neural networks in fault detection/diagnosis 

Papers have already started to introduce artificial neural networks to fault prediction methods in 

photovoltaic systems. In [26] the authors explore the utilization of this tool to build a detection network. 

Evaluation of the ANN’s performance is done using the mean square error (MSE). Their system is 

composed by a photovoltaic panel connected to a DC/DC boost converter with P&O algorithm for MPPT 

control, presented in Figure 2.13. 

 

 

Figure 2.13 - System design [27] 
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In this study, five faults were tested, demonstrated in Table 2.4. It was subdivided in normal 

operation, one inverse module where the current passes through the bypass diode, two inversed 

modules, partial shadow in two or three modules and total shadow effect.  

 

Table 2.4 - Classification of PV array faults [26] 

Category Fault type Symbol Code 

1 Normal operation H [1;0;0] 

2 Inversed module: one module F1 [0;1;0] 

3 Inversed modules: two modules F2 [1;1;0] 

4 Shading 1: two modules shadowed F3 [1;0;1] 

5 Shading 2: three modules shadowed F4 [0;1;1] 

6 Shading 3: intense shading effect F5 [1;1;1] 

 

To construct the artificial neural network, they used a Matlab based model and configured the inputs 

as voltage and power of the PV system, the targets were set as the codes shown in Table 2.4. Data set 

for this problem was split into two subsets, 70% was used to train the gradient and to readjust the bias 

and weights. The other 30% were samples to validate the model. MSE allowed for a more accurate test 

of the model as it utilized as an error the difference between the targets and the outputs obtained in the 

training process. A normal measure to apply to these types of networks. 

Over in [16] another type of fault detection using ANN is proposed. First simulations were performed 

based on the system to identify normal operation and define a threshold limit for it. A study of the I-V 

curve, of the characteristics of the system was carried out. In Table 2.5 is shown a list of faults 

recognized by the authors as the more probable to occur and more prone to higher loss of power. 

 

Table 2.5 - Types of faults occurring in a PV array [16] 

Type of fault Name Symbol 

Module 

Short circuit fault in any bypass diode or (cell or 
module) 

F1 

Inversed bypass diode fault or (cell or module) F2 

Shunted bypass diode or (cell or module) F3 

Open circuit fault in any cell or (module) F4 

Connection fault Connection resistance between PV modules F5 

Partial shadow fault Shadow effect in the modules with normal operation of 
different components of PV strings 

F6 

Shadow effect with faulty 
bypass diode 

Shadow effect in a group of cells equipped by a faulted 
bypass diode open 

F7 

Shadow effect with 
connection fault 

Shadow effect in a group of module connected by a 
connected resistance 

F8 
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After simulations and already an established set of faults, starts the first part of the schematic 

designed by the authors. Values are compared with simulations to detect if the threshold limits, 

previously stated, are in check or not. Then it leads, based on the previous identification, to an attribute’s 

selection. This was defined in the simulations, where from the study of the characteristics of the system 

a relation could be made with the electric parameters. The attributes can relate to the number of faults 

and their type of flaw. Moving further, knowing the attributes, the authors differentiated faults with two 

algorithms, number one isolating the faults when they have different combinations. Here is where the 

simulated and measured are calculated, and their relative difference is compared with threshold values. 

All of them are determined by the measurement noise and the model’s uncertainty. Then the second 

algorithm distinguishes faults that have the same attributes. It uses an ANN to choose which fault is 

affecting the system [16].  
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Chapter 3 

Model interpretation 

3 Model interpretation 

This chapter focusses on the model utilized to create a database for faults and standard behaviour. Here 

it is described how it was developed and a detailed explanation why it was chosen for this purpose. 

Also, as it is a new model, an experimental procedure was done to conclude if it managed to follow 

characteristic I-V curves and could simulate mismatch faults. 
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3.1 Model explained 

The model developed by Eduardo Sarquis [27], was chosen to create a database with standard 

behaviour and abnormal behaviours. This model uses the same methodology of the one diode and five 

parameter model to represent the equivalent solar cell circuit. However, it has a different view, instead 

of looking at the system as a string of photovoltaic modules, goes into more depth and gives a more 

detailed approach, by considering each cell. The basic structure in a PV panel, the solar cell, is taken 

as the most important, a panel is now seen as a set of cells with a predetermined configuration. For 

example, the ones used in the energy laboratory in IST are constituted by three substrings, each with 

twenty-four cells. Every cell will have its parameters, and the aggregate of all will constitute the 

equivalent circuit and therefore the panel. A more detailed explanation will be given now, where all the 

pros and cons of using the model will be elucidated. 

It has the same fundamental equations as the one diode and five parameter model, the ones stated 

in chapter 2.1.4. The difference is that usually, that model is used to calculate those unknown 

parameters, and, in this case, those values are from CEC. CEC means the California energy 

commission. It is a known and respected institute, that test various types of photovoltaic panels. They 

went through rigorous and precise experimental tests, leading to the obtention of the five parameters 

for each of those panels. An optimized variation of the one diode and five parameter model is used by 

this institution, which will be presented below [28]. 

The presented equation (15) below is equal to the model shown in chapter 2.1.4, equation (3). 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 (𝑒
𝑉+𝐼∙𝑅𝑠
𝑛∙𝑉𝑡 − 1) −

𝑉 + 𝐼 ∙ 𝑅𝑠
𝑅𝑠ℎ

(15) 

 

However, CEC uses the sixth parameter to adapt the temperature coefficient of the short circuit (𝜇𝐼𝑠𝑐) 

and open-circuit voltage (𝛽𝑉𝑜𝑐). The reference values (𝛼𝑠𝑐,𝑟𝑒𝑓) and (𝛽𝑜𝑐,𝑟𝑒𝑓) are obtained from the panel’s 

datasheet, provided by the manufacturer. From this new parameter, called adjust, the new values are 

calculated using the next two equations (16,17): 

 

𝛼𝐼𝑠𝑐 = 𝛼𝑠𝑐,𝑟𝑒𝑓 (1 −
𝑎𝑑𝑗𝑢𝑠𝑡

100
) (16) 

 

𝛽𝑉𝑜𝑐 = 𝛽𝑜𝑐,𝑟𝑒𝑓 (1 +
𝑎𝑑𝑗𝑢𝑠𝑡

100
) (17) 

 

Searching their website, at [29], gives access to a database of photovoltaic panels, where they were 

tested, allowing the gathering of their parameters (Rs,ref, Rsh,ref, n, Is, Iph, adjust), at STC [30]. The 
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reference values are given at standard test conditions, a normalized reference for all panels. Values 

these refer to the temperature at 25ºC and irradiance at 1000 W/m2. As known the panel has a usual 

configuration being regularly constituted by three substrings, each with a bypass diode, and with twenty 

or twenty-four cells in each substring. In this model, a description of the configuration is given in the form 

of a matrix. It has three fields [i, j, k], i represents the number of strings in parallel, all with the same 

number of panels, j represents, simultaneously, the number of substrings and the number of bypass 

diodes, and k symbolizes the number of cells in each substring. As an example, a 3x3 panel 

configuration where each panel has seventy-two cells would be represented in a matrix composition like 

this [3, 3, 24]. Meaning all the variables will have a matrix of their own to represent each cell in the 

system. To commence the model receives as input all the variables below: 

• Input: 

➢ Vref – voltage determined by the number of panels in the system. 

➢ G – irradiance values for each cell. 

➢ T – temperature values for each cell. 

➢ Rs – a coefficient matrix used to multiply the Rs,ref values, with standard behaviour each 

value of the matrix will be equal to one. 

➢ Rsh – a coefficient matrix used to multiply the Rsh,ref values, with standard behaviour, 

each value of the matrix will be equal to one. 

➢ Iph,cell – a coefficient matrix used to multiply the Iph, with standard behaviour, each value 

of the matrix will be equal to one. 

➢ CellParam – a vector with all the CEC parameters, in order: Iph, Is, Rsh, Rs, n, αsc, adjust. 

➢ Inicond – represents initial conditions, can be optional to start, storing results in the 

output RES from previous iterations. 

A brief illustration of all constants used over the calculations: 

Constants: 

• Boltzmann constant → KBev = 8.617332478e-5 [eV/K] or KB = 1.381*10-23 [J/K] 

• Electron charge → q = 1.602*10-19 [C] 

• Cell material bandgap energy → Egref = 1.121 [eV]  

• Cell material bandgap correction → dEg/dt = -0.00002677 

• αIsc = αsc*(1-adjust/100) 

• Cell temperature = T+273.15 

The current is the main output and this variable changes significantly with weather conditions, 

primarily with temperature and irradiance, in the following equations (18,19,20,21,22). According to [28], 

these variations are calculated to provide a more accurate calculation of the output current. Next 

equations (18,19) retrieve the value of Is. In (18), a correction to the cell material bandgap energy based 

on the temperature is applied. In (19) that correction is used in conjunction with the temperature of the 

cell to obtain the saturation current. 
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{
 
 

 
 𝐸𝑔 = 𝐸𝑔,𝑟𝑒𝑓 (1 +

𝑑𝐸𝑔

𝑑𝑡
(𝑇𝑐𝑒𝑙𝑙𝐾 − 298)) (18)

𝐼𝑠 = 𝐼𝑠,𝑟𝑒𝑓 ((
𝑇𝑐𝑒𝑙𝑙𝐾
298

)
3

𝑒
(
𝐸𝑔,𝑟𝑒𝑓

𝐾𝐵𝑒𝑣∙298
−

𝐸𝑔
𝐾𝐵𝑒𝑣∙𝑇𝑐𝑒𝑙𝑙𝐾

)
) (19)

 

 

Another correction based on temperature and irradiance values is made in the next two equations, 

now interfering with IL, the cell’s output current: 

 

{
𝐼𝑝ℎ = 𝐼𝑝ℎ,𝑟𝑒𝑓 ∙ 𝐼𝑝ℎ𝑐𝑒𝑙𝑙 + 𝑎𝐼𝑠𝑐(𝑇𝑐𝑒𝑙𝑙𝐾 − 298) (20)

𝐼𝑝ℎ = 𝐼𝑝ℎ ∙
𝐺

1000
(21)

 

 

The series resistance is not influenced by any of these factors, at least significantly to be noted; on 

the other hand, the shunt resistance is by irradiance values. A correction is applied with the equation 

below (22): 

 

𝑅𝑠ℎ = 𝑅𝑠ℎ ∙
1000

𝐺
(22) 

 Configuring the bypass diode requires parameters, these are: 

• TD = 25ºC → Bypass diode temperature. 

• Isd = Is,ref → Bypass diode current. 

 

Having all the corrected values, according to the selected temperature and irradiance, lets the known 

method newton-raphson be employed to acquire the output current. It is an iterative approach where an 

initial guess is given to the output and iteratively calculates another output until the error between the 

two last value is less than the desired. 

 

Finally, the model is complete, and it gives the outputs, these are: 

✓ Iout – the output current. 

✓ RES – a vector with all calculated variables. 

✓ Flag – numerical convergence alerts. 

✓ Y – residual error from the system of equations.  

 

The model can express mismatch errors in the I-V curve. It proves to be extremely helpful to simulate 

specific behaviours, producing very reliable sources of knowledge to determine abnormal operation. 
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Hence the utilization of said model; however, it also brings a high computational cost. It needs to 

calculate for each cell the output current instead of only for one panel. In the next subchapter, an 

experimental procedure will be explained to demonstrate the capabilities of the model and compare it 

with the results obtained from that experiment. 

3.2 Experimental procedure – Testing the model 

In the energy laboratory, an experimental procedure for analysis of the I-V characteristic curve of 

healthy and damaged solar cells in PV panels was carried out. There were two solar monocrystalline 

PV panels, both with the same manufacturer’s datasheet. They were previously set in the rooftop of the 

north tower in IST, and one of them suffered damage from high-velocity wind caused by a storm. From 

this event that panel had broken glass and had one broken cell, these conclusions were drawn by visual 

observation. Figure 3.1 shows a side by side comparison of the two panels tested in the laboratory. 

 

 

Figure 3.1 - The two panels tested in the laboratory: left side (broken glass and a broken cell), right side 
(healthy panel) 

 

Behind the solar panels, openings were made to access the cells individually. For that, and to have 

more immediate, more effortless and more stable readings; small claws were welded to allow links for 

wires, shown in Figure 3.3. Before mounting the setup, the manufacturer’s datasheet, seen in Table 3.1, 

was observed for better comprehension of the limits and boundaries of the equipment.   
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Table 3.1 - Panel's Datasheet 

Manufacturer’s Datasheet Suntech 

Model STP190S-24/Ad+ 
Rated Maximum Power (Pmax) 190 W 

Output Tolerance 0/+5% 
Current at Pmax (Imp) 5.20 A 
Voltage at Pmax (Vmp) 36.6 V 

Short-Circuit Current (ISC) 5.62 A 
Open-Circuit Voltage (VOC) 45.2 V 

Nominal Operating Cell Temp. 
(TNOCT) 

45ºC ± 2ºC 

Weight 15.5 Kg 
Dimension 1580mm×808mm×35mm 

Maximum System   Voltage 1000 V 

Maximum Series Fuse Rating 15 A 

Cell Technology Mono-Si 
Application Class A 

All technical data at standard test condition  
AM = 1.5 E = 1000 W/m2 TC=25ºC 

 

After acknowledging the significant aspects of the datasheet, the setup for the experiment was 

constructed. A configuration of the experimental setup is present in Figure 3.2. It is composed by the 

solar cell on the panel, connected through wires, in parallel to the voltage sensor, and to the current 

sensor and the variable resistance, these last two connected in series. 

 

 

Figure 3.2 - Illustration of the setup in the energy laboratory 

 

In Figure 3.3 and Figure 3.4, the actual setup and its configuration are demonstrated. 
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Figure 3.3 - Connection of the cell in a panel to the I-V curve tracer system 

 

 

Figure 3.4 – Overall connections of the system 
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The sensors are then linked to a DAQ to obtain the measurements and transfer them to the PC. 

Reproducing the effect of the solar light is a 500 W lamp, fixed in an angle of incidence of approximately 

90 degrees. It was a necessity to maintain the irradiance at maximum value and with the least refracted 

and reflected light in the area lit. Rotation of the lamp and the movement back and forth, to simulate 

different levels of irradiance, initially caused errors in measurements, so a custom design track was built 

to reduce those errors to a minimum. As it can be seen in Figure 3.5, it only allows the movement of the 

lamp in a single direction. Also simplified the measurements of irradiance, as the measurements were 

marked in the track, representing the various irradiance levels related to the distance to the solar cells. 

 

Figure 3.5 – Custom design track 

 

To accomplish this objective, first, there had to be a consideration for the maximum current and 

maximum voltage that the solar cells could reach. All this to be possible to draw the I-V curve in all its 

points. However, when the resistive load is applied, it was not possible to obtain the short circuit current 

(Isc), but a very close value. It was due to the resistance applied by the wires. These will always apply 

resistance which in this case cannot be neglected. To minimize this effect two cables were connected 

in parallel in each solar cell terminal, instead of only one. A reduction of almost 50% was accomplished 

by using this method. Measurements for the wires’ resistance are presented in appendix A. Another 

effect to be considered, the input/output variation applied by both the voltage and the current sensor 

(hall sensors). Linear regression was done, to fix the deviation caused by this error, seen in Figure 3.6 

and corrected in the final curve, one for the voltage sensor and another for the current sensor.  
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Figure 3.6 – Hall sensor correction 

 

To the DAQ results, the V and I, respectively, voltage and current, the obtained sensor’s input/output 

corrections below are applied: 

Voltage sensor →  0.78 ∙ 𝑉 − 0.013 

Current sensor →   1.88 ∙ 𝐼 − 0.027 

 

In Figure 3.7 and Figure 3.8 can be seen the juxtaposition between an I-V curve with the hall sensor 

corrections, in voltage and current measurements, in blue, and an I-V curve without corrections, in 

orange. With higher irradiance is possible to see the limitations of this setup as it does not trace the 

curve to the point of the short circuit. However, the objective is still maintained, as the curve is 

perceptible, in Figure 3.7. In the lower irradiance curve, Figure 3.8, the curve is much more defined. 
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Figure 3.7 - Experimental result of an I-V curve with an irradiance of 1000 W/m2 

 

 

Figure 3.8 - Experimental result of an I-V curve with an irradiance of 230 W/m2 

 

Continuing the corrections’ path, the resistance of the wires was calculated for each irradiance level. 

Even with the corrections, it is not possible to reach the short circuit current in higher irradiance levels, 

and it becomes worse due to the still high levels of resistance. The relation between the voltage, current 

and resistance is known as ohm law (23). 

 

𝑉 = 𝑅 ∙ 𝐼 (23) 
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In the lower irradiance levels, the current presents lower values and the resistance in the wires is 

interferes less in the I-V curve. However, when increasing the current, the resistance will affect more 

and prevent the tracing of lower voltage points, figures Figure 3.13, Figure 3.14 and Figure 3.15 illustrate 

this side effect ideally. For the maximum efficiency and to minimize errors, an experimental method was 

outlined and followed precisely in every measurement made, all the steps can be seen in Figure 3.9. 

 

Figure 3.9 – Experimental procedure 
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Proceeding with the experiment, other types of corrections for measured data had to be delimited. 

These are all stated in Figure 3.10. 

 

Figure 3.10 – Corrections for measured data 

 

Moreover, the own equipment’s error window had to be accounted for. This is shown in Figure 3.11. 

 

Figure 3.11 – Errors due to equipment 

 

Based on the previous enumerations of errors a diagram was constructed for easier visual 

comprehension, it can be observed in Figure 3.12. Labels, in the figure below, were designated 

according to the error they represent. Label 1 is an error caused by measuring errors that can be 

eliminated by doing at least ten measurements and trace an average value of them. Label 2 is the 

equipment’s error, stated in their datasheet, which is available in the annex. Label 3 is the equations’ 

error, which includes the wire resistance and the sensors corrections.  
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Figure 3.12 - Diagram representing all error steps 

All the procedure of measuring contained errors in the equipment and with the several steps, a 

propagation of the error had to be calculated. According to [31], the ways to calculate error propagation 

depend on their combination, when an addition is applied using a corrected value equation (25). 

Equation (24) serves as an example of corrected variables being summed or subtracted. 

 

𝑄 = 𝑎 + 𝑏 +⋯+ 𝑐 − (𝑥 + 𝑦 +⋯+ 𝑧) (24) 

 

𝛿𝑄 = √(𝛿𝑎)2 + (𝛿𝑏)2 +⋯+ (𝛿𝑐)2 + (𝛿𝑥)2 +⋯+ (𝛿𝑧)2 (25) 

In another case, when the corrected value is used in a multiplication or a division, a different error 

propagation equation (27) should be applied to calculate the proper error. In equation (26) an example 

of corrected variables being multiplied and divided is given to demonstrate the process used in the 

calculation. 

𝑄 =
𝑎 ∙ 𝑏⋯𝑐

𝑥 ∙ 𝑦⋯𝑧
(26) 

 

𝛿𝑄

|𝑄|
= √(

𝛿𝑎

𝑎
)
2

+ (
𝛿𝑏

𝑏
)
2

+⋯+ (
𝛿𝑐

𝑐
)
2

+ (
𝛿𝑥

𝑥
)
2

+⋯+ (
𝛿𝑧

𝑧
)
2

(27) 

The work started with the acquisition of the I-V curve from the DAQ, where it was performed a total 

of ten trials for each level of irradiance for two different cells, one in the heavily damaged panel and one 

in the healthy one. It was mainly to test the model with the actual cell behaviour. However, another 
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comparison between a healthy cell, a broken glass cell and a broken cell was made to understand the 

behaviour and comprehend what happened to the characteristic curve in these situations. Below in 

Figure 3.13, Figure 3.14, Figure 3.15, respectively broken cell, broken glass and healthy panel cell, are 

represented the I-V curves obtained for each radiation (230, 400, 600, 800, 1000 W/m2), where each 

colour is bond to a radiation value. It is shown all the ten tests in each radiation, creating a cloud of 

results for all I-V curves. The curves follow the usual characteristic I-V shape. However, it can be seen 

that the current is the highest in the healthy panel. Then comes the broken glass cell and finally with 

almost a 50% reduction in current the broken cell. This effect is more pronounced in higher irradiance 

levels. 

Figure 3.13 - Broken cell I-V curve for the following irradiances: 230 (blue), 400 (red), 600 (cyan), 800 (yellow), 

1000 (green) [W/m2] 

Initially, it was supposed to implement broken cells and broken glass as faults, however, these were 

not. It was tested and confirmed that broken glass changes the variation of received irradiance, due to 

the breakage of the glass, yet it remains difficult to characterize this deterioration given the inconsistency 

of the glass fractures. In the broken cell case is even more complicated. It requires the place where it 

got cracked, with high precision as it can induce several errors depending on the location. It is also 

problematic to know if the cell is damaged and not only the glass protecting it. For these reasons, those 

faults were not pushed in the variants to analyse. 
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Figure 3.14 – Broken glass I-V curve for the following irradiances: 230 (blue), 400 (red), 600 (cyan), 800 
(yellow), 1000 (green) [W/m2] 

Going further, the plots referring to the experimental procedure will be using the healthy panel. 

Now to test the model with the experimental results I-V curves with the same characteristics, 

temperature and irradiance, a simulation will be produced by the model and compared in Figure 3.16. 

In a first juxtaposition, there is a visible difference in the current and voltage of the model compared 

with the experimental, being the latter smaller. It was detected a variation in the temperature read in the 

multimeter and the actual cell temperature, this was due to the location of the measurement. As it cannot 

be read in the front of the panel because it would block the solar irradiation. So, it is read behind the 

panel, and a constant temperature is applied to that value, previously calculated as an increase of 25ºC. 

As for the irradiance, a ratio is multiplied to the value measured by the solar meter, more specifically, 

0.72. This lower irradiation caught in the experimental result is caused by a lower spectral power range 

of the 500 W lamp. The model is prepared for the sun’s irradiation which has higher spectral power. 

Hence the use of a ratio to fit the current, this will be justified, experimentally, in Figure 3.20 where the 

whole panel was tested outdoor. Applying both amendments to get a good approximation, obtained, as 

shown in Figure 3.17. 
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Figure 3.15 – Healthy panel I-V curve for the following irradiances: 230 (blue), 400 (red), 600 (cyan), 800 
(yellow), 1000 (green) [W/m2] 

 

Figure 3.16 - Model and experimental results, in blue experimental and black model 
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Figure 3.17 - Model, with ratio (0.72) multiplied by the irradiance, in black and experimental results in blue 

The basic unit defined in the model was tested and produced similar results to the experimental, 

proceeding with an experiment on the whole panel. The same experiment as the one done for the cell 

was applied to the whole panel. However, it was done outdoors. In Figure 3.18, the outdoor experimental 

setup is shown. Now the cells were obtaining light irradiance from the sun, and the levels of irradiance 

were not possible to control, contrary to the lamp. 

 

Figure 3.18 – Outdoor experimental procedure 
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For this test, a broad range of faults was tested, and all are present in Table 3.2. Standard behaviour 

was tested, and then the significant faults were drawn to be tested. Those were short circuit, shading 

and open circuit. However, the open circuit could damage the panel, and it was dropped. Subtypes of 

faults had to be delimited. For short circuits, it was necessary to test only one short-circuited cell, to 

comprehend the behaviour and what would imply in other short circuits. Twenty-Four cells and forty-

eight cells short circuits were tried out to simulate a substring or two substrings short circuits, 

respectively. For shading, a more extensive range of tests had to be done. First, one cell was shaded 

with several percentages of shade in each test. That was accomplished by blocking, with an opaque 

object, a percentage of the cell equal to the percentage of shading. Concluding that test then two cells 

were shaded, one in each of two substrings, and the same levels of percentage were applied. Finally, 

the same was done for six cells, two in each substring. For every trial, there were done five curve 

tracings, to reduce measuring errors. Plot results of the procedure can be seen below in Figure 3.19. 

 

 

Table 3.2 - Behaviours tested outdoor 

Behaviour: Standard Short Circuit Shading 

Subtypes            
of           

behaviour 
Standard operation 

One cell 

One cell-shaded (in 
one substring) 

25%, 50%, 75%, 
100% 

Twenty-four cells 

Two cells shaded 
(one in each 
substring) 

25%, 50%, 75%, 
100% 

Forty-eight cells 

Six cells shaded (two 
in each substring) 

25%, 50%, 75%, 
100% 

 

The I-V curves may change accordingly to the temperature and irradiances in the moment of the 

extraction of results, for every graph a table with the respective irradiances and temperatures will be 

below it to verify the variations of the curve with the actual variables.  
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Figure 3.19 - Healthy panel in standard operation 

 

Table 3.3 - Irradiances and temperatures related to figure 3.19 

Tests Test 1 Test 2 Test 3 Test 4 Test 5 

G [W/m2] 641 636 638,5 641,5 643 

T [ºC] 42 42 43 42,5 42 

 

The values, in Table 3.3 from column Test 1, were inserted into the model and a graph was plotted to 

envision a model comparison with the actual outdoor experiment, the first test can be seen in Figure 

3.20. A relative distance is immediately noticed; however, it should be remembered that the 

measurements of irradiances vary a lot in a brief period. The solar meter has a large gap of failure, and 

the irradiance measurement was done with visual observation of the solar meter. It can also lead to a 

small error, allied to the back measurement of the cell’s temperature can induce a variation, as indicated 

in the laboratory essays. However, it was seen that the same constant could not be applied. A trial and 

error method was tested in the model, and for the mentioned plot, the best approximation was defined 

to be plus 9ºC to the measured temperature. In Figure 3.21, a plot of the referenced work is shown. All 

statements conclude that measurement errors can justify these small distances in the graph. 
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Figure 3.20 - Model vs Outdoor experiment comparison, without temperature adjustments 

 

Figure 3.21 - Model vs Outdoor experiment comparison, with temperature adjustments



 

47 
 

 

Chapter 4 

Database construction 

4 Database construction 

In this chapter, a meticulous explanation of the database creation process is done. Faults used in 

the database are specified, and the reasons behind their choices are justified.    
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4.1 Overview 

To create a database, an understanding of the faults produced by the model was necessary. For 

this, it was decided to plot specific abnormal behaviours and a standard one to compare with each other 

and comprehend them hence choosing the best way to form a database. Table 4.1 enunciates all the 

chosen modes of operation. A typical mode, a short circuit of one cell, a short circuit of a substring, a 

short circuit of two substrings and all three short-circuited substrings. These form a general perspective 

of a panel and carry general options that can happen. For shading, broader subtypes were simulated. It 

was due to having more factors that could influence this type of power loss. Such as the number of cells 

being shadowed, their location and the percentage of shading being applied.  

4.2 Fault creation 

The model proposed in chapter 3 can effectively obtain results for mismatches in cells in a panel. 

The first approach for a database was standard behaviour, this term should not be mistaken with 

standard test conditions, the temperature and irradiance change in each test, however the system has 

no faults. To obtain results, a user introduces the topology of a system, the irradiance and temperature. 

Then the result will be an I-V curve with points equal to the number of substrings in the system times 

one hundred (𝑗 ∙ 100), equally spaced. It was essential to maintain the same step between the points in 

the curve and to keep the step small because in the process of choosing the maximum power point a 

higher step could cause deviations, producing a less viable database. For the modes enumerated above 

Table 4.1 is presented for a more transparent comprehension of them. These subtypes were chosen for 

different reasons. Starting with the short circuit denomination: a one-cell short circuit was especially to 

characterize the primary unit and the minimum decrease that could happen. The substring and the two 

substring short circuits were simulated to represent one third and two-thirds of this designated fault 

pattern. In shading operation, a little shading, minus 50 W/m2, and a more substantial gap shading, 

minus 500 W/m2, these numbers refer to the minimum error of the solar meter and half of the standard 

test condition irradiance, respectively. 
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Table 4.1 - Types and subtypes of operation simulated using the model 

Types of 
behaviour 

Standard 
Short 
Circuit 

Shading → - 50 W/m2 
Shading → - 500 

W/m2 

Subtypes of 
behaviour 

Standard 

1 Cell → 
(SC1) 

1 Cell → (SH1-G50) 
1 Cell → (SH1-

G500) 

24 Cells → 
(SC24) 

2 Cells, one in each substring 
→ (SH11-G50) 

2 Cells, one in 
each substring → 

(SH11-G500) 

48 Cells → 
(SC48) 3 Cells, one in each substring 

→ (SH111-G50) 

3 Cells, one in 
each substring  → 

(SH111-G500) 72 Cells → 
(SC72) 

 

 

Obtaining a standard operation mode was simple. It consisted of running the model, and the only 

variables to choose were the topology, this is the overall system configuration, the temperature of the 

cells, and the irradiance being absorbed by the panels. For other modes of operation, it would imply 

changes to the matrices created by the model. To create short circuit faults the cells need to be in short 

circuit, to imitate this effect in the simulation model the Rs and the Rsh need to be zero. In this simulation, 

these values cannot be zero, so a low value is given to them to provoke the short circuit. In Figure 4.1, 

an equivalent circuit of a short-circuited cell can be observed. It provides an example of merely one cell. 

In the whole system, depending on the number of short circuits, there will be an equal number of cells 

with the same parameters as the one shown in Figure 4.1. In this type of fault, it does not matter the 

position of the cell and the consequence in the output will be a lower voltage value. If a lower voltage is 

detected, it is characterized as a short circuit of several cells, which depends on the decrease in voltage. 

 

Figure 4.1 - Equivalent circuit of a cell under the effect of a short circuit 
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For a shading operation, when part of the panel is receiving less irradiance, the matrix of the 

irradiance must be changed in the position of the cells which are under that effect. In this case, the 

position of the cells being affected does matter because when a cell receives lower irradiance, it will 

have less current passing through it, changing the current, in that substring, to the value of the lowest 

cell’s current. Causing mismatch and in the long run, will damage the cell and in consequence, the 

panel. Having that in mind, when simulating shade in cells, only a cell in a substring should be tested. 

Another factor to notice is the percentage of shade applied to the cell. Lower percentages indicate lower 

irradiance drops. In contrary, higher percentages of shade present high irradiance drops. However, 

when the difference between currents in a substring is too high, the bypass diode starts conducting, and 

the current passes through it instead of the cells in parallel. This is a mechanism to protect cells from 

major mismatch faults. However, when the bypass diode is damaged, the substring will suffer damage 

faster and become unused. So, giving input to the script should have in attention the position and the 

percentage of the shade, in Figure 4.2 is a representation of a shaded cell.  

 

 

Figure 4.2 - Equivalent circuit of a cell under the effect of a shade 

 

A scheme presented in Figure 4.3 shows a simplified description of the necessary variables to 

change and the inputs to insert to create each behaviour. In conjunction with this, there are also figures 

to complement with a visual aid of how the panel would look like in a cell level under these modes of 

operation.  
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Figure 4.3 - Methods applied to simulate chosen faults and visual representation of said faults 

 

4.3 Plot observation and comparison 

From Table 4.1, a first simulation, based on the described modes, was made to be able to plot a 

combination of different behaviours. Making visible the significant similarities and differences between 

abnormal and standard behaviours. Every type and subtype were compared with each other as a way 

of showing to the reader what can and what cannot be distinguished. In Figure 4.4, a plot, of standard 

and short circuit can be observed, with a maximum power point for each curve. For this plot there is a 

clear distinction between the short circuit and standard behaviour, except in the low short circuit case. 

The loss of one cell’s voltage will not cause enough drop of voltage to guarantee a clear separation of 

these two behaviours. There is an unmistakable difference between all the short circuits.  All other plots 

are available in the appendix B. In these graphs a zoom is applied for difficult points to observe and in 

their legends is all the essential information. 

Standard:

•Topology 
•Temperature 

•Irradiance

Short-Circuit:

•Topology
•Temperature
•Irradiance
•Rs and Rsh close to zero in 

selected cells

Shading:

•Topology
•Temperature
•Irradiance
•Lower Irradiance in selected 

cells
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Figure 4.4 - Standard and Short circuit, both with an irradiance of 1000 W/m2 and temperature of 70ºC 

4.4 Database structure 

Proceeding with the database structure, parameters were set to define boundaries, the temperature 

was set from zero to ninety degrees Celsius {0,90} and irradiance from two hundred to a thousand watts 

per square meter {200,1000}. These values were chosen based on the average ambient temperature 

plus the irradiance in contact with the panel, which increases their temperature. For irradiance, the 

values were based on the lowest meaningful to the standard test irradiance value. The temperature, in 

a cycle, would change from zero to ninety in a two Celsius step, this was adopted because the datasheet 

of the panel had the minimum error defined equal to two. Again, the irradiance step was set to fifty watts 

per square meter as it was the solar meter established error. This process of construction of the 

database proved to be inefficient when introduced in the artificial neural network. It overfitted since the 

data collected was simulated statically, only changing the topology or the CEC parameters of the panel, 

affecting the results. So, the ANN could imitate the function simulating these results, causing a deficient 

error percentage. However, it will not be a real demonstration of the pattern capabilities of this tool and 

provides inaccurate output. Resolving this upset a whole new logic was applied to the construction of 

the database, replacing a static structure by a random. In place of doing cycles with temperature and 

irradiance, these are chosen from a random discrete uniform distribution with a minimum and maximum 

value defined. To increase the randomness of the whole process, the mode of operation is also randomly 

chosen with the same configuration, only changing the minimum and maximum. From {0,3} where zero 

to one defines the standard operation, one to two defines short circuit operation and from two to three 
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defines shading operation. Inside the short circuit mode, also a random distribution is applied to the 

number of short circuits. In shading, two random operations must be applied, the number of cells being 

affected and the percentage of shadow affecting them. 

Having a defined structure with all variables used stored was very important. It allowed to define and 

identify specific subtypes of faults; in this matter, it is presented a vector of the final structure containing 

all the parameters inputted and the outcome variables. As mentioned before the first values are the 

voltage and then the current from the I-V curve tracing, necessary to observe if anything appears to be 

out of order. Subsequently come the temperature, the irradiance, the voltage of maximum power, the 

current of the maximum power and the maximum power. Later the subtypes specific variables appear, 

the number of short circuits (Nsc), the number of shaded cells (Nsh) and the percentage of shade (Psh). 

The final three columns represent the output code, defining the behaviour. Over in Table 4.2, an example 

of a row of the matrix, for one panel, is shown, it is represented as a column since it provides a better 

portrayal. 

 

Table 4.2 - Example of a row in a database, with the number of components below their respective names 

V 

(300) 

I 

(300) 

T 

(1) 

G 

(1) 

Vmpp 

(1) 

Impp 

(1) 

Pmpp 

(1) 

Nsc 

(1) 

Nsh 

(1) 

Psh 

(1) 

OC 

(3) 
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After concluding the random database had better results in artificial neural network training as it had 

less issues with overfit, however another issue arose from the same theme. The number of entries in 

the system could cause overfitting. So, to understand how many entries the database should have the 

maximum number of possibilities were thought out, considering only one panel. In Table 4.3, it is 

presented all the possible cases. 

 

Table 4.3 - Total combinations possible using the random database 

Standard Short-Circuit Shading 

Variables: T, G 
Variables: T, G, Number of 

Short circuits (Nsc) 

Variables: T, G, Number of 
shaded cells (Nsh), percentage 

of shading (Psh) 

T = [0,90]; 

 G = [200,1000] 

T = [0,90]; 

 G = [200,1000]; 

Nsc = [1,72] 

T = [0,90]; 

 G = [200,1000]; 

 Nsh = [1,3]; 

 Psh = [20,80] 

Total Standard = 91∙800 = 
72.800 

Total SC = 91∙800∙72 = 
5.241,600 

Total SH = 91∙800∙3∙60 = 
13.104,000 

Total = 72,800 + 5.241,600 + 13.104,000 = 18.418,400 

 

A 10000 entries database was constructed. It was decided to be this size due to computational time, 

and as can be seen, it is not a number that will cause overfitting for an ANN. To give an insight into the 

time spent on this process, 10000 entries took approximately 12 hours to complete, in a student’s laptop. 

However, when measuring in a real system, there will be oscillations in values that cannot occur in a 

simulation. To create this effect in the database, a random matrix, with the same size of the dataset, 

was manufactured. It had values, in percentage, between -5 and +5 which were multiplied with the 

dataset, causing a variation in all variables, creating noise in the results. After finalizing both matrices, 

the simulated and the noise were put together creating a 20000 matrix database. In the appendix C a 

flowchart of the process of construction of the database is presented, displaying the most important 

steps. 
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Chapter 5 

Artificial neural network 

development 

5 Artificial neural network development 

In this chapter, the artificial neural network is presented, tested with several builds and explained in 

detail. An explanation for each algorithm chosen will be given, and all the choices made will be 

scrutinised. 
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5.1 Artificial neural network inputs 

The beginning of an ANN starts with input variables essential to the output and to differentiate them 

from each result. Having a high number of inputs will increase the computational cost of an ANN and 

will augment its complexity. To get an I-V curve temperature and irradiance are essential, not having 

one of these will make it impossible to obtain accurately a behaviour. An easily understandable example 

would be a standard operation with a sudden decrease in irradiance, which would trigger a decrease in 

current. However, if there is no indication of that variable, the system may indicate an abnormal mode. 

In temperature, a decrease will cause a reduction of the voltage and a small increase in current, when 

compared to the variation of the voltage. Hence a reduction of power will be felt. Now thinking about 

only having access to the inverter constrains the utilization of the I-V curve in all its expansion. The 

inverter stores the points of maximum power, the voltage and the current, and these would be the other 

two variables to introduce in the ANN.  

5.2 Pre-processing data 

The input, as observed in the previous chapter, will contain four variables: temperature, irradiance, 

maximum power current and maximum power voltage. Each has its unit, and they all have different 

figures in their respective units. Making it more difficult for the artificial neural network algorithms to 

converge on a unique function capable of correlating input to output. To facilitate this process and also 

as a way of trying to reduce variables in the input, several approaches to normalizing the input were 

tried. First, the temperature was taken out and divided from the voltage and current. However, as it 

proved, removing this variable difficulted the process of the ANN, proving to be inefficient. The same 

happened with the irradiance, with even worst results for being the number with more figures in it causing 

a reduction in all variables to low numbers harder to distinguish. Finally, a better normalization was 

thought out to establish all maximum values close to the output code. The voltage was divided by the 

open-circuit voltage, the current by the short circuit current, the temperature by the maximum 

temperature and the irradiance by the maximum irradiance values.   

5.3 Output code 

Transforming three states of operation in a number is the main goal here. The ANN has a function 

that converges to the numbers chosen as output, and if balanced correctly, it can widely improve the 

accuracy of the method. The outputs will be each specific to the behaviours chosen: standard, short-
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circuit and shading. To make them unique three output variables were created, and from that, an output 

configuration was designed, as can be seen in Table 5.1. 

Table 5.1 - Modes of operation and their respective output code 

Mode of operation Standard Short-circuit Shading 

Output code [ 0 ; 0 ; 1 ] [ 0 ; 1 ; 0 ] [ 1 ; 0 ; 0 ] 

 

5.4 Algorithms  

A feed-forward network was chosen as the artificial neural network for this study. It applies what was 

thought out. It is designed to be trained by given inputs into respective outputs, depending on the 

combination of the inputs an output is obtained. The nominated behaviours all have specific 

combinations of inputs that produce the desired output. However, it is not a linear problem; thus, the 

utilization of the neural network, which provides a pattern for each mode. It consumes less time than 

obtaining all results. To allow the network to ‘understand’ the pattern training is required, here the 

database is divided into three parts: training, validation, testing. The training part is established to be 

70% of the whole database, and the remaining parts are each divided into 15%. These values are 

previously chosen and can be changed; in Table 5.2, a database division can be seen. 

Table 5.2 – Database division in ANN  

Training                                                                                         
(70%) 

Validation 
(15%) 

Testing 
(15%) 

 

This process is random, meaning the second training of this ANN will have 70% of the database. 

However, it will be constituted by different entries. It is also a randomizing process to accurately provide 

the best pattern recognition tool. In this section, the inputs are given, and their respective output targets, 

a first initiation technique is instituted. The weights and biases are fitted to give an approximation to the 

target. Working to achieve the best fitting possible a scaled conjugate gradient backpropagation method 

is applied to the training [32]. From here a mathematical model is obtained, able to predict the output 

from similar inputs. After this close approximation, the validation part begins, where randomly picked 

entries will provide an unbiased evaluation of the mathematical model fit acquired in training. The 

weights and biases will be optimized and the hyperparameters established may also be changed. These 

are set before the learning step starts, and a simple example would be the number of hidden neurons. 

However, in this case, these are picked and fixed in the entirety of the process. Finally, the last step 

takes place, the testing starts, and it is used to provide an unbiased evaluation of the performance of 

the final model, after training fitting and validation optimization. Now to stop the routine one of the 

following actions need to happen: 
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• the maximum number of repetitions is hit 

•  the maximum amount of time is exceeded 

• performance reaches the minimized goal 

• performance gradient falls below a minimum 

• validation performance increased more than a defined number of times since the last time 

it decreased 

 

If it is well structured, it will stop when the generalization of the model stops improving, demonstrated 

by an increase in the cross-entropy error. It compares the desired output with the actual output attained, 

penalizing outputs that are incredibly inaccurate and for adequately correct classifications, provides a 

very low penalty. Its calculation is specified in (28), for each pair of the target (t) – output (y) pair an error 

is calculated. Given this is a classification problem cross-entropy provides a faster and more accurate 

convergence to an optimal solution than minimum squared error (MSE), as referred to in [33]. The 

decision boundary in a classification problem is significant, and MSE does not punish misclassifications 

enough. 

𝑐𝑒 =  −𝑡 ∙ log(𝑦) (28) 

 

Assessing the performance of the finalized mathematical function is done by two methods, a 

performance graph of a cross-entropy error vs epochs (repetitions) is the first approach. It plots the error 

development along with the repetitions made to reduce it. In Figure 5.1 can be seen as an illustrative 

performance plot. It shows the best approximation it can reach and each of the three parts curves. To 

judge and understand how a performance curve is considered ‘good’ and thus decide that the ANN is 

well fitted, there are two factors: the first applies to the curve and if it can reach a convergence point, 

maintaining a constant slope without sudden peaks. The second is the relation of each curve. If they all 

converge together, it demonstrates the ANN is qualified for the problem at hand, considering there are 

no dissimilarities. 
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Figure 5.1 – Illustrative example of a performance plot 

Consequently, the two next figures presented, Figure 5.2 and Figure 5.3, are the performance plots of 

the 10000 database with no noise added and the 20000 database with noise. As expected, the error will 

be lower in the dataset with no noise. However, there is a slight distance between the curves, causing 

a higher variation in the ANN provoking less correct predictions and more mistakes with other modes. 

In the performance graph of the 20000 dataset can be seen an apparent convergence of all curves. 
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Figure 5.2 – Performance graph of the 10000 database with no noise added 

 

Figure 5.3 – Performance graph of the 20000 database with noise added 
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The second approach is with a confusion matrix, where a comparison between the different output codes 

obtained through the mathematical model and the targets is made and from that a matrix defining the 

relation within each output code and with whose it confused it. For a more direct and concise 

explanation, a confusion matrix is shown in Figure 5.4. There it can be seen in the rows of the matrix 

the output codes, 1 representing [1 0 0] (shading), 2 representing [0 1 0] (short-circuit), 3 representing 

[0 0 1] (standard). In the columns the target codes are represented, the interconnection between both 

express the failed try or a correct try. An example is easier to explain, the number in the position (1,1) 

in the matrix refers to the correct output code and how many it got right, specific to 1, obtained with the 

model. In position (2,1) is the number of times the model confused the target code 1 with output code 

2, and in position (3,1) refers the number of times it missed target code 1 and swapped it with output 

code 3. The last row exhibits the percentage of correct and wrong fittings, where the target was 

designated 1, and the output was distributed by different codes, having a failure rate of 27.3% and a 

positive rate of 72.7%. When observing and comprehending if the final result is an acceptable neural 

network the most important trait to examine should be the test part, due to it being the final product and 

no more corrections are implemented, contrary to training and validation. 

 

Figure 5.4 - Illustrative example of a confusion matrix 
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For each part will be done a confusion matrix, for the training, the validation and the testing. A final 

matrix is completed with all values of each singular part of the technique. In Figure 5.5, a visual 

representation of the four matrices is given. These are the matrices obtained from the dataset with 

10000 normalized entries, and no noise added. 

 

Figure 5.5 - Confusion matrices of all steps in a learning process of an ANN, in this specific case 10000 
normalized entries with no noise added 

 

As stated in chapter 4, random noise was added into the 10000 entries database to imitate possible 

discrepancies between simulated and experimental results. So, this dataset is a 20000 entry one with 

noise added, in the form of a 5% error in all input variables. In Figure 5.6 is represented the matrices 

equivalent to Figure 5.5 related to this new dataset. 
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Figure 5.6 – Confusion matrices of all steps in a learning process of an ANN, in this specific case 20000 
normalized entries with noise added 

 

With the first dataset, there is overfitting. It is noticed when comparing the training error with the 

testing error, where an increase in this value is considerable, it proves there may be overfitting in the 

training step. There is also a definite drop in correct classification and a bump in error, due to the 

addition of noise. However, it guarantees reliable variations of experiments and measurements. 
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Chapter 6 

Testing an artificial neural 

network 

6 Testing an artificial neural network 

In this chapter, the final artificial neural network model will be used to provide conclusions about the 

behaviour of a photovoltaic panel. An outdoor experiment was accomplished, and different behaviours 

were tested and gathered all the inputs needed for the network. A comparison between what happened 

and what the ANN guessed will be presented, and the more common mistakes will be shown. 
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6.1 Outdoor testing conditions  

An outdoor experiment was tested, as indicated in chapter 3, with known behaviours, described in 

Table 3.2. That experience was executed to have a term to compare with the results of the produced 

model. In the previous chapter, the artificial neural network was trained, for deducting the state of a 

single photovoltaic panel, and from that, a mathematical model was attained capable of that. Now an 

analogy is to be made between the established modes induced and the output of the prototype. The 

inputs can be gathered from the inverter in operating conditions, considering an mppt tracker included 

in the system, however in the experiment the whole I-V curve was drawn and from that the maximum 

power points were retrieved, both voltage and current. For cell temperature, two multimeters were used 

and for irradiance a solar meter. In a conventional system without resource to the temperature 

measuring devices, a formula (29) can be used. It only requires the datasheet of the panel, for the value 

of NOCT, the irradiance meter and the ambient temperature (𝜃𝑎). 

 

𝑇𝑐𝑒𝑙𝑙𝑘 = 𝜃𝑎 +
𝐺(𝑁𝑂𝐶𝑇 − 20)

800
(29) 

6.2 Results from outdoor testing 

A matrix compiling all the values of the outdoor experiment was inserted as input to the model. These 

are present in the appendix D. From that an output was reached, by the function, in Figure 6.1 is shown 

the correct estimates, in green, and the wrong, in red. It presents the correct output and its assumption.  
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Figure 6.1 - Outdoor results after passing through the trained model 

The first name tag indicates the targeted behaviour and the second indicates the one found by the 

model. For example, in Standard → SC, the panel is in a standard behaviour, however the model 

indicates a short circuit operation. In the cases where there is only one name tag, it indicates the model 

chose the mode of operation correctly. The graph is a more illustrative way of showing the results, hence 

being the first to be presented to the reader. However, it does not present all the information. The 

decision of choosing if it is determined mode is designated by the probabilities the model outputs. These 

are presented in five tables, Table 6.1, Table 6.2, Table 6.3, Table 6.4, Table 6.5. The tables were 

divided to better suit the page of the document and by fault condition. However, in shading another split 

was made based on subtypes of shading.  In the graph previously presented, it is a defined behaviour 

when the output grants more than 50% of a mode. In a first look at the failure detection, caring only if it 

managed to know if the system was working without faults or not, it showed a performance of 95% 

efficiency. It indicated 81 correct outputs, 3 false alarms and 1 unnoticed failure. 

Table 6.1 - Output results of standard condition, from outdoor testing, after passing through the mathematical 
model 

Denomination Shading (%) Short-Circuit (%) Standard (%) 

Standard 

0,0 23,4 76,6 

0,0 37,8 62,2 

0,0 29,5 70,5 

0,0 26,6 73,5 

0,0 32,6 67,4 

Another 
Standard 

0,0 59,8 40,3 

0,0 2,5 97,5 

0,0 65,4 34,7 

0,0 52,7 47,3 

0,0 1,5 98,5 
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Table 6.2 - Output results of short circuit condition, from outdoor testing, after passing through the 
mathematical model 

Denomination Shading (%) Short-Circuit (%) Standard (%) 

Short circuit 
(1 cell) 

0,0 68,9 31,1 

0,0 67,7 32,4 

0,0 61,2 38,8 

0,0 63,6 36,4 

0,0 71,6 28,4 

Short circuit 
(24 cells) 

0,0 11,5 88,5 

93,4 6,6 0,0 

15,5 84,5 0,0 

20,8 79,2 0,0 

96,4 3,6 0,0 

Short circuit 
(48 cells) 

99,9 0,0 0,0 

99,9 0,0 0,0 

3,5 96,4 0,0 

6,1 93,9 0,0 

43,4 56,6 0,0 

 

Table 6.3 - Output results of one cell shading condition, from outdoor testing, after passing through the 
mathematical model 

Denomination Shading (%) Short-Circuit (%) Standard (%) 

Shading 
(1 cell, 25%) 

99,9 0,0 0,1 

99,9 0,0 0,1 

99,9 0,0 0,1 

99,9 0,0 0,1 

99,9 0,0 0,1 

Shading 
(1 cell, 
50%) 

11,2 88,8 0,0 

16,3 83,7 0,0 

10,5 89,5 0,0 

2,7 97,3 0,0 

12,0 88,0 0,0 

Shading 
(1 cell, 
75%) 

8,4 91,7 0,0 

6,1 93,9 0,0 

6,7 93,3 0,0 

8,8 91,2 0,0 

7,5 92,5 0,0 

Shading 
(1 cell, 
100%) 

2,1 97,9 0,0 

8,5 91,6 0,0 

0,8 99,2 0,0 

8,0 91,7 0,0 

2,0 98,0 0,0 
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Table 6.4 - Output results of two cell shading, one in each substring, condition, from outdoor testing, after 
passing through the mathematical model 

Denomination Shading (%) Short-Circuit (%) Standard (%) 

Shading 
(2 cells, one in 

each 
substring,25%) 

99,9 0,0 0,1 

99,9 0,0 0,1 

99,7 0,0 0,3 

99,7 0,0 0,3 

99,7 0,0 0,3 

Shading 
(2 cells, one in 

each 
substring,50%) 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

Shading 
(2 cells, one in 

each 
substring,75%) 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

Shading 
(2 cells, one in 

each 
substring,100%) 

97,8 2,2 0,0 

99,0 0,9 0,0 

99,0 0,9 0,0 

99,1 0,9 0,0 

99,0 0,9 0,0 
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Table 6.5 - Output results of two cell shading, two in each substring, condition, from outdoor testing, after 
passing through the mathematical model 

Denomination Shading (%) Short-Circuit (%) Standard (%) 

Shading 
(6 cells, two in 

each 
substring,25%) 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

Shading 
(6 cells, two in 

each 
substring,50%) 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

Shading 
(6 cells, two in 

each 
substring,75%) 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

Shading 
(6 cells, two in 

each 
substring,100%) 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

99,9 0,0 0,0 

 

From the analysis of the graph, it can be seen that the standard operating condition is confused with 

short circuit only. It is caused, as previously mentioned in chapter 4, by a low difference in voltage drop, 

mainly in the test with only a short-circuited cell, a decrease in 0.5 volts. There is also a particular case 

in the short circuit of 24 cells in a substring that caused an error in the classification. It chose standard 

instead of short circuit due to the claw. The one used to short circuit the whole substring by connecting 

it with both terminals of the bypass diode, not providing contact to the metal. In Figure 6.2, the I-V curves 

of that sample of the test are drawn, and it shows the inefficiency of the claw in the blue curve where it 

fails to represent the loss of approximately 12 volts. 
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Figure 6.2 - I-V curves of a short circuit in a substring (24 cells) of the outdoor experiments 

 

The rest of the tests, consisting of the standard mode were correct, just with different irradiances which 

caused changes in the current. By looking at Table 6.1 and Table 6.2, it can be noticed in some cases, 

proximity in probabilities between the short-circuit and standard operation. This is again caused by the 

proximity in voltage drops from one case to another. There was no complication in accessing the 

differences with standard and shading, meaning these two are not correlated and do not interfere with 

each other in the decision process. Moving on to short circuit evaluation, the same happens when a 

behaviour should be a short circuit. In one specific case, it classifies it as usual due to the low difference 

in voltage. Now the major upset is the confusion between short circuit and shading. It happens when 

the operating condition should be a short circuit, and it classifies it as shading. In the test occurred four 

times, two times in a substring short circuit and two times in a two substring short-circuit. This 

misinterpretation is created because when a high percentage of shading exists in a cell of a substring, 

said string would activate its bypass diode not to compromise the rest of the system. However, this 

originates a drop in voltage of approximately one substring causing confusion between a short circuit of 

a substring (24 cells) and shading. This behaviour is only similar when the short circuit is exclusively 

equal to the number of cells in one substring or more. Entirely comprises of the number of cells in short 

circuit, if the number, in a panel, is of 24, 48 or 72 it may confuse with shading. An example would be 

30 short-circuited cells spread across the three substrings the behaviour compared with a high 

percentage of shading would be different. As the panel was enclosed and further destruction of it was 

not deemed necessary, these tests were not completed. In shading another failed misinterpretation of 
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the model arose, it misrepresented the three tests of on cell shaded with percentages of the shade of 

50%, 75% and 100%, confusing it with a short circuit. Again, due to the misleading coincidences 

between them in these specific cases. Even with all these wrong assumptions, in all these cases, there 

is always a percentage stating it is not 100% correct.  

The damaged panel was also tested, and abnormal behaviour was given. However, it is challenging 

to determine the level of damage the panel suffered, making it harder to envision its electrical 

parameters behaviour. 

6.3 Results from model 

An analysis of the outdoor results was appointed and discussed in the previous subchapter, yet 

another scrutiny was decided to be relevant to mention to the reader, that being the chapter 3 model 

results. The previous analysis gathered a 73% accuracy however here lies an associated error from the 

simulation and from the trained neural network results. Using the variables gathered in the outdoor 

results (temperature and irradiance), a simulation was made, and those values were inputted in the 

artificial neural network to demonstrate this propagated error. In Figure 6.3 the results can be seen. 

 

 

Figure 6.3 - Simulation results after passing through the trained model 

 

In this situation, there are unambiguous correct patterns. The standard and shading modes demonstrate 

an unambiguous behaviour which the ANN model can unequivocally classify. It displays the wrong 

indicator in short circuit mode of operation. It misinterprets the one short-circuited cell with the standard 

condition and both the substring (24 cells) short circuit and the two substrings (48 cells) short circuit with 

shading operation.  
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6.4 Summary of results 

Starting with the database results, there is a clear area where the trained model has difficulty 

accessing. It is the short circuit boundaries. If the short circuit is low, it struggles to decide between 

standard and short circuit. If the short circuit is equal to a substring or more than one, it coincides with 

the shading operation. From a total of 85 simulated tests, the trained model deduced correctly 70. It 

portraits an accuracy of 82,35%. The database and the trained model are correlated. One created the 

other, and this was mainly analysed to understand what could be improved, this will be referred to in the 

last chapter. 

In the outdoor results, a more different situation is met, there are more imprecise outputs. Standard 

and short circuit get mistaken between each other with a low-level drop of voltage. The measurement 

error rate can even mistake a short circuit when standard behaviour is applied. Moreover, for shading 

and a short circuit occurs the misinterpretation stated in the above paragraph. However, there is an 

indication in the probabilities, showing the feasibility of another behaviour. A total of 85 outdoor tests 

were performed, and from that sample, 62 were correctly diagnosed, giving an accuracy of 72,94%. A 

decrease in performance was expected, considering the measurement errors of all the equipment 

utilized.  
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Chapter 7 

Conclusions 

7 Conclusions 

A conclusion of the work is presented in this chapter. All major points are appointed, and improvements 

are documented. Recommendations for future work in this area and insight is given to continue the 

research on this theme. 
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In this thesis, known behaviours of photovoltaic systems were studied, namely, the standard 

operating condition, short circuit and shading. Open circuits were not developed in this work as there 

was no way of properly test them. However, this fault has a pattern equivalent to a high percentage of 

shading when the bypass diode activates. After studying and learning about those faults, a knowledge 

of the one diode five parameter model was gathered to understand the model used to simulate cell 

behaviour. Then the simulation model was optimized to be able to create the best reference values of 

each behaviour. First a static database was created, however it created overfitting in the artificial neural 

network training. A random database proved to be more efficient for ANN training as it did not overfit. 

Normalization of the input values established better results. However, only when normalized values 

were approximated to the interval [0;1]. Reducing the number of inputs was tried and it did not work, it 

proved to hinder the convergence process in the ANN. The four inputs cannot be taken out, they are all 

essential for an accurate detection and diagnosis. Even when one input was normalized using another 

it proved to complicate the analysis of the artificial intelligence method. Many networks were created 

with different hidden layer nodes however the ones with five showed the best results. The addition of 

noise occurred with the intention of creating a threshold in the values, to create the measurement error 

threshold in the network. It demonstrated overall positive effects, also in removing the overfitting. Then 

the outdoor test in a photovoltaic panel was done and compared the accuracy of the trained model of 

the ANN in outdoor circumstances and the accuracy of the simulation model. The primary observation 

made was of the detection method, where it achieved a performance of 95%. In the diagnosis the 

accuracy was 73%. In the detection department it displays a very solid achievement. In regard to 

diagnosis performance, it decreased due to measurement errors and error propagation of all applied 

methods and techniques, however it showed promising results. 

From collected results, there are improvements recommended to be applied in the database creation. 

Topology consisting of more than one panel should be simulated. However, the computational cost will 

increase in the process of forming these new databases. Another enhancement would be focusing on 

the struggle of the artificial neural network on the differentiation of the short circuit and regular operation. 

It should include a restriction of the lower level of a short circuit, a threshold. Meaning the minimum in a 

panel detection would be 10% of the total voltage. This percentage was based on the measuring devices 

used in the experiments, and they were not optimal. In the example, this specific panel utilized in testing 

and simulation has close to 36 V, 10% of that would be 3.6 volts what amounts to approximately seven 

cells (3.5 V). It creates a more considerable barrier between these modes and prevents errors from 

measurements. In a system with more panels, this would still be equivalent to 10% of the total voltage 

of the system. If the measuring devices diminish their error rates, this percentage can also decrease.  

In the artificial neural network enhancements, the more prone to be implemented would be a new 

input entry for topology. Allowing the information on the number of panels in series to be known by the 

network. If the model provides excellent accuracy, to simplify the design of the structure, the topology 

value can be inserted in the Vmpp input, by dividing it. It would cause a total voltage of a system to be 

normalized to a total panel voltage. If it leads to reduced accuracy, this idea should be discarded. 

For open-circuit fault the model trained and constructed could still be used to detect them. 
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Considering these have the same behaviour as shading, which is a temporary fault when shading fault 

is identified, a program could run several times in different hours along the day. If it changes the 

diagnosis to standard, it should be a shading operation, that occurs only during a particular hour. 

However, if it stays along the day, it can indicate an open circuit. 

Constructing databases across all photovoltaic systems can bring new awareness for diagnosis 

methods and possibilities for a more straightforward implementation of artificial intelligence in these. 

Crossing the simulated values with real systems can augment the perception of new patterns in PV 

diagnosis branch. Studies across new and older systems can even bring an ageing chart of various 

panels, making available a unique diagnosis method that can predict faults based on minimal factors 

influencing its future behaviour. 
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A. Appendix A: Wires’ 

resistance 

Appendix A 

Wires’ resistance 

This section presents the wires’ resistance calculated in the indoor experimental setup.  
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Table A.1 – Measurements, of one cell, for the calculation of the wires’ resistance 

Healthy Panel 

G (W/m2) Isc (A) V (V) VR1 (V) VR2 (V) VR (V) T (°C) R (Ω) 

1000 4,370 0,2100 0,0484 0,0685 0,1169 64,0 0,0268 

800 3,250 0,1425 0,0384 0,0562 0,0946 55,0 0,0291 

600 2,460 0,0946 0,0285 0,0382 0,0667 47,0 0,0271 

400 1,595 0,0701 0,0192 0,0260 0,0452 39,0 0,0283 

230 0,903 0,0373 0,0109 0,0136 0,0245 32,0 0,0271 

 

Table A.2 – Error computation for correction related to the wires’ resistance 

VR1 error (%) VR2 error (%) Isc error (%) VR error (%) R error (%) 

1,08 2,04 2,94 0,98 3,10 

3,12 1,39 3,11 1,33 3,38 

1,68 3,58 3,30 1,59 3,66 

3,63 1,62 3,63 1,55 3,94 

5,18 2,17 4,11 2,13 4,63 
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B. Appendix B: Simulation 

plots 

Appendix B 

Simulation plots 

This section presents the plot comparison between each simulated behaviour. 
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Figure B.1 – Normal and shading, in one cell (SH1), in two cells in different substrings (SH11) and three cells 
in different substrings (SH111),  with a decrease of 50 W/m2 in irradiance, both have G = 1000 W/m2 and T = 

70ºC 

 

Figure B.2 - Normal and shading, in one cell (SH1), in two cells in different substrings (SH11) and three cells 
in different substrings (SH111), with a decrease of 500 W/m2 in irradiance, both have G = 1000 W/m2 and T = 

70ºC 
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Figure B.3 – Short circuit and shading, in one cell (SH1), in two cells in different substrings (SH11) and three 
cells in different substrings (SH111), with a decrease of 50 W/m2 in irradiance, both have G = 1000 W/m2 and T = 

70ºC 

 

 

Figure B.4 - Short circuit and shading, in one cell (SH1), in two cells in different substrings (SH11) and three 
cells in different substrings (SH111), with a decrease of 500 W/m2 in irradiance, both have G = 1000 W/m2 and T 

= 70ºC 
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Figure B.5 - Shading, with a decrease of 50 W/m2 in irradiance, and the other with a decrease of 500 W/m2 
both, in one cell (SH1), in two cells in different substrings (SH11) and in three cells in different substrings 

(SH111), both have G = 1000 W/m2 and T = 70ºC 
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C. Appendix C: Database 

flowchart 

Appendix C 

Database flowchart 

This section presents the flowchart of the database. 
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Figure C.1 – Flowchart of database 
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D. Appendix D: Outdoor 

test results 

Appendix D 

Outdoor test results 

This section presents the outdoor test results, all normalized. 
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Table D.1 – Standard behaviour outdoor results, normalized 

 
Temperature Irradiance Voltage Current 

Standard 

0,4667 0,6410 0,7305 0,6176 

0,4667 0,6360 0,7179 0,6244 

0,4778 0,6385 0,7215 0,6231 

0,4722 0,6415 0,7263 0,6210 

0,4667 0,6430 0,7233 0,6251 

Another 
Standard 

0,4778 0,7600 0,7089 0,7190 

0,4611 0,6490 0,6999 0,7068 

0,4611 0,6330 0,7101 0,6020 

0,4611 0,6270 0,7143 0,6081 

0,4667 0,5350 0,7149 0,6081 

 

 

Table D.2 – Short circuit behaviour outdoor results, normalized 

 
Temperature Irradiance Voltage Current 

Short 
circuit of 1 

cell 

0,4778 0,7100 0,6975 0,6864 

0,4889 0,6400 0,6969 0,6210 

0,4833 0,6130 0,6999 0,6020 

0,4833 0,5900 0,7005 0,5775 

0,4833 0,5050 0,6987 0,4890 

Short 
circuit of 
24 cells 

0,4556 0,6470 0,7047 0,6775 

0,4556 0,6600 0,4721 0,5006 

0,4667 0,5850 0,4721 0,6285 

0,4611 0,5630 0,4745 0,5789 

0,4611 0,7100 0,4691 0,5353 

Short 
circuit of 
48 cells 

0,4444 0,8100 0,7143 0,4550 

0,4444 0,6730 0,7239 0,4931 

0,4556 0,6000 0,2262 0,8939 

0,4444 0,5200 0,2310 0,7748 

0,4444 0,4700 0,2322 0,6455 
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Table D.3 – Shading, of one cell in one substring, outdoor results, normalized  

 
Temperature Irradiance Voltage Current 

Shading 
(1 cell, 25%) 

0,4611 0,6685 0,8061 0,4911 

0,4667 0,6690 0,8049 0,4918 

0,4611 0,6680 0,8055 0,4911 

0,4611 0,6680 0,8013 0,4945 

0,4611 0,6680 0,8019 0,4938 

Shading 
(1 cell, 
50%) 

0,4611 0,6765 0,4721 0,6544 

0,4722 0,6765 0,4721 0,6510 

0,4722 0,6770 0,4697 0,6537 

0,4722 0,6770 0,4631 0,6619 

0,4667 0,6775 0,4715 0,6496 

Shading 
(1 cell, 
75%) 

0,4556 0,7155 0,4721 0,6707 

0,4500 0,7060 0,4715 0,6626 

0,4444 0,6660 0,4727 0,6251 

0,4500 0,7000 0,4733 0,6381 

0,4556 0,7100 0,4715 0,6646 

Shading 
(1 cell, 
100%) 

0,4667 0,6725 0,4631 0,6455 

0,4611 0,6930 0,4709 0,6551 

0,4667 0,6790 0,4589 0,6571 

0,4722 0,6870 0,4685 0,6544 

0,4722 0,6725 0,4619 0,6462 
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Table D.4 - Shading, of two cells, one in each substring, outdoor results, normalized 

 
Temperature Irradiance Voltage Current 

Shading 
(2 cells, one in 

each 
substring,25%) 

0,4500 0,7395 0,7893 0,5516 

0,4444 0,7320 0,7833 0,5550 

0,4444 0,7050 0,7875 0,5578 

0,4556 0,7050 0,7851 0,5584 

0,4500 0,7050 0,7881 0,5578 

Shading 
(2 cells, one in 

each 
substring,50%) 

0,4556 0,7295 0,8336 0,3536 

0,4500 0,7320 0,8330 0,3536 

0,4556 0,7330 0,8342 0,3543 

0,4500 0,7330 0,8342 0,3550 

0,4500 0,7380 0,8354 0,3543 

Shading 
(2 cells, one in 

each 
substring,75%) 

0,4611 0,7395 0,8582 0,1828 

0,4722 0,7535 0,8582 0,1849 

0,4611 0,7480 0,8576 0,1842 

0,4611 0,7525 0,8570 0,1849 

0,4611 0,7435 0,8558 0,1828 

Shading 
(2 cells, one in 

each 
substring,100%) 

0,4556 0,7500 0,2004 0,8361 

0,4556 0,7390 0,2118 0,7007 

0,4556 0,7570 0,2136 0,7088 

0,4556 0,7570 0,2082 0,7306 

0,4556 0,7550 0,2136 0,7075 
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Table D.5 - Shading, of two cells one in each substring, outdoor results, normalized 

 
Temperature Irradiance Voltage Current 

Shading 
(6 cells, two in 

each 
substring,25%) 

0,4500 0,7100 0,7857 0,5081 

0,4500 0,7160 0,7893 0,5047 

0,4444 0,7210 0,7923 0,4958 

0,4444 0,7445 0,7917 0,5094 

0,4500 0,7530 0,7929 0,5142 

Shading 
(6 cells, two in 

each 
substring,50%) 

0,4389 0,7910 0,8402 0,3094 

0,4333 0,7945 0,8390 0,3039 

0,4389 0,7955 0,8414 0,2971 

0,4389 0,7960 0,8426 0,2903 

0,4500 0,7945 0,8420 0,2829 

Shading 
(6 cells, two in 

each 
substring,75%) 

0,4833 0,8210 0,8318 0,2128 

0,4833 0,8140 0,8300 0,2107 

0,4833 0,8190 0,8318 0,2114 

0,4889 0,7970 0,8300 0,2073 

0,4944 0,7960 0,8306 0,2053 

Shading 
(6 cells, two in 

each 
substring,100%) 

0,4833 0,8120 0,8528 0,0039 

0,4944 0,8100 0,8522 0,0039 

0,4889 0,7910 0,8504 0,0039 

0,4889 0,7770 0,8492 0,0039 

0,4889 0,7720 0,8498 0,0039 
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A. Annex A: Equipment 

datasheets 

Annex A 

Equipment datasheets 

In this section, the equipment’s datasheets are presented. 
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Figure A.1 - Multimeter Datasheet 
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Figure A.2 – Solar meter datasheet 
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Figure A.3 – Ammeter datasheet 

 

 

Figure A.4 - DAQ datasheet 

 

 

 


